Citation: | Yang Lun, Wu Shixi, Fu Qinglong, 2024. Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Molecular Characterization of Dissolved Organic Matter: A Bibliometrics-Based Visual Study. Earth Science, 49(11): 4156-4168. doi: 10.3799/dqkx.2023.220 |
Bahureksa, W., Young, R. B., McKenna, A. M., et al., 2022. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environmental Science & Technology, 56(7): 4597-4609. https://doi.org/10.1021/acs.est.1c06745
|
Chen, M. L., Jung, J., Lee, Y. K., et al., 2018. Surface Accumulation of Low Molecular Weight Dissolved Organic Matter in Surface Waters and Horizontal Off⁃Shelf Spreading of Nutrients and Humic⁃Like Fluorescence in the Chukchi Sea of the Arctic Ocean. Science of the Total Environment, 639: 624-632. https://doi.org/10.1016/j.scitotenv.2018.05.205
|
Du, L., Liu, Y. M., Hao, Z. N., et al., 2022. Fertilization Regime Shifts the Molecular Diversity and Chlorine Reactivity of Soil Dissolved Organic Matter from Tropical Croplands. Water Research, 225: 119106. https://doi.org/10.1016/j.watres.2022.119106
|
Du, P. H., Liu, W., Zhang, Q., et al., 2023a. Transformation of Dissolved Organic Matter during UV/Peracetic Acid Treatment. Water Research, 232: 119676. https://doi.org/10.1016/j.watres.2023.119676
|
Du, Y., Deng, Y. M., Li, Y. P., et al., 2023b. Paleo⁃ Geomorphology Determines Spatial Variability of Geogenic Ammonium Concentration in Quaternary Aquifers. Environmental Science & Technology, 57(14): 5726-5738. https://doi.org/10.1021/acs.est.3c00528
|
Du, Y., Deng, Y. M., Liu, Z. H., et al., 2021. Novel Insights into Dissolved Organic Matter Processing Pathways in a Coastal Confined Aquifer System with the Highest Known Concentration of Geogenic Ammonium. Environmental Science & Technology, 55(21): 14676-14688. https://doi.org/10.1021/acs.est.1c05301
|
Fievre, A., Solouki, T., Marshall, A. G., et al., 1997. High⁃Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Humic and Fulvic Acids by Laser Desorption/Ionization and Electrospray Ionization. Energy & Fuels, 11(3): 554-560. https://doi.org/10.1021/ef970005q
|
Gonsior, M., Schmitt⁃Kopplin, P., Stavklint, H., et al., 2014. Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Technology, 48(21): 12714-12722. https://doi.org/10.1021/es504349p
|
Guo, M. L., Li, X. L., Wang, Y., et al., 2023. New Insights into the Mechanism of Phosphate Release during Particulate Organic Matter Photodegradation Based on Optical and Molecular Signatures. Water Research, 236: 119954. https://doi.org/10.1016/j.watres.2023.119954
|
Hertkorn, N., Benner, R., Frommberger, M., et al., 2006. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta, 70(12): 2990-3010. https://doi.org/10.1016/j.gca.2006.03.021
|
Hockaday, W. C., Grannas, A. M., Kim, S., et al., 2006. Direct Molecular Evidence for the Degradation and Mobility of Black Carbon in Soils from Ultrahigh⁃ Resolution Mass Spectral Analysis of Dissolved Organic Matter from a Fire⁃Impacted Forest Soil. Organic Geochemistry 37(4): 501-510. https://doi.org/10.1016/j.orggeochem.2005.11.003
|
Hu, T. C., Luo, M., Qi, Y. L., et al., 2023. Molecular Evidence for the Production of Labile, Sulfur⁃Bearing Dissolved Organic Matter in the Seep Sediments of the South China Sea. Water Research, 233: 119732. https://doi.org/10.1016/j.watres.2023.119732
|
Kellerman, A. M., Dittmar, T., Kothawala, D. N., et al., 2014. Chemodiversity of Dissolved Organic Matter in Lakes Driven by Climate and Hydrology. Nature Communications, 5: 3804. https://doi.org/10.1038/ncomms4804
|
Kellerman, A. M., Kothawala, D. N., Dittmar, T., et al., 2015. Persistence of Dissolved Organic Matter in Lakes Related to Its Molecular Characteristics. Nature Geoscience, 8: 454-457. https://doi.org/10.1038/ngeo2440
|
Koch, B. P., Dittmar, T., 2006. From Mass to Structure: An Aromaticity Index for High⁃Resolution Mass Data of Natural Organic Matter. Rapid Communications in Mass Spectrometry, 20(5): 926-932. https://doi.org/10.1002/rcm.7433
|
Li, M. J., Fan, X. J., Zhu, M. B., et al., 2019. Abundance and Light Absorption Properties of Brown Carbon Emitted from Residential Coal Combustion in China. Environmental Science & Technology, 53(2): 595-603. https://doi.org/10.1021/acs.est.8b05630
|
Liu, S. S., He, Z. Q., Tang, Z., et al., 2020. Linking the Molecular Composition of Autochthonous Dissolved Organic Matter to Source Identification for Freshwater Lake Ecosystems by Combination of Optical Spectroscopy and FT⁃ICR⁃MS Analysis. Science of the Total Environment, 703: 134764. https://doi.org/10.1016/j.scitotenv.2019.134764
|
Longnecker, K., Kujawinski, E. B., 2011. Composition of Dissolved Organic Matter in Groundwater. Geochimica et Cosmochimica Acta, 75(10): 2752-2761. https://doi.org/10.1016/j.gca.2011.02.020
|
Lu, K. J., Li, X. L., Chen, H. M., et al., 2021. Constraints on Isomers of Dissolved Organic Matter in Aquatic Environments: Insights from Ion Mobility Mass Spectrometry. Geochimica et Cosmochimica Acta, 308: 353-372. https://doi.org/10.1016/j.gca.2021.05.007
|
Lü, J. T., Zhang, S. Z., Wang, S. S., et al., 2016. Molecular⁃Scale Investigation with ESI⁃FT⁃ICR⁃MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 50(5): 2328-2336. https://doi.org/10.1021/acs.est.5b04996
|
McDonough, L. K., Andersen, M. S., Behnke, M. I., et al., 2022. A New Conceptual Framework for the Transformation of Groundwater Dissolved Organic Matter. Nature Communications, 13(1): 2153. https://doi.org/10.1038/s41467⁃022⁃29711⁃9
|
Milstead, R. P., Remucal, C. K., 2021. Molecular⁃Level Insights into the Formation of Traditional and Novel Halogenated Disinfection Byproducts. ACS ES & T Water, 1(8): 1966-1974. https://doi.org/10.1021/acsestwater.1c00161
|
Niu, G. X., Yin, G. G., Mo, X. H., et al., 2022. Do Long⁃Term High Nitrogen Inputs Change the Composition of Soil Dissolved Organic Matter in a Primary Tropical Forest? Environmental Research Letters, 17(9): 095015. https://doi.org/10.1088/1748⁃9326/ac8e87
|
Noriega⁃Ortega, B. E., Wienhausen, G., Mentges, A., et al., 2019. Does the Chemodiversity of Bacterial Exometabolomes Sustain the Chemodiversity of Marine Dissolved Organic Matter? Frontiers in Microbiology, 10: 215. https://doi.org/10.3389/fmicb.2019.00215
|
Qiao, W., Guo, H. M., He, C., et al., 2021. Identification of Processes Mobilizing Organic Molecules and Arsenic in Geothermal Confined Groundwater from Pliocene Aquifers. Water Research, 198: 117140. https://doi.org/10.1016/j.watres.2021.117140
|
Roth, V. N., Lange, M., Simon, C., et al., 2019. Persistence of Dissolved Organic Matter Explained by Molecular Changes during Its Passage through Soil. Nature Geoscience, 12: 755-761. https://doi.org/10.1038/s41561⁃019⁃0417⁃4
|
Seidel, M., Beck, M., Riedel, T., et al., 2014. Biogeochemistry of Dissolved Organic Matter in an Anoxic Intertidal Creek Bank. Geochimica et Cosmochimica Acta, 140: 418-434. https://doi.org/10.1016/j.gca.2014.05.038
|
Sleighter, R. L., Hatcher, P. G., 2007. The Application of Electrospray Ionization Coupled to Ultrahigh Resolution Mass Spectrometry for the Molecular Characterization of Natural Organic Matter. Journal of Mass Spectrometry, 42(5): 559-574. https://doi.org/10.1002/jms.1221
|
Sleighter, R. L., Hatcher, P. G., 2008. Molecular Characterization of Dissolved Organic Matter (DOM) along a River to Ocean Transect of the Lower Chesapeake Bay by Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Marine Chemistry, 110(3-4): 140-152. https://doi.org/10.1016/j.marchem.2008.04.008
|
Sheng, M., Chen, S., Liu, C. Q., et al., 2023. Spatial and Molecular Variations in Forest Topsoil Dissolved Organic Matter as Revealed by FT⁃ICR Mass Spectrometry. Science of the Total Environment, 895: 165099. https://doi.org/10.1016/j.scitotenv.2023.165099
|
Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. https://doi.org/10.1016/j.marpetgeo.2009.01.006
|
Stenson, A. C., Marshall, A. G., Cooper, W. T., 2003. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry 75(6): 1275-1284. https://doi.org/10.1021/ac026106p
|
Stubbins, A., Spencer, R. G. M., Chen, H. M., et al., 2010. Illuminated Darkness: Molecular Signatures of Congo River Dissolved Organic Matter and Its Photochemical Alteration as Revealed by Ultrahigh Precision Mass Spectrometry. Limnology and Oceanography 55(4): 1467-1477. https://doi.org/10.4319/lo.2010.55.4.1467
|
Tong, G. H., Yang, X. L., Li, Y., et al., 2022. Impacts of Haze on the Photobleaching of Chromophoric Dissolved Organic Matter in Surface Water. Environmental Research, 212: 113305. https://doi.org/10.1016/j.envres.2022.113305
|
Wan, X. F., Liu, C. C., Zhao, D. F., et al. 2023. Hotspot and Development Trend of Shale Oil Research. Earth Science, 48(2): 793-813 (in Chinese with English abstract).
|
Wang, K., Fang, H. W., He, G. J., et al., 2023a. Optical and Molecular Diversity of Dissolved Organic Matter in Sediments of the Daning and Shennong Tributaries of the Three Gorges Reservoir. Frontiers in Environmental Science, 10: 1112407. https://doi.org/10.3389/fenvs.2022.1112407
|
Wang, Y. H., Tian, X. G., Song, T. L., et al., 2023b. Linking DOM Characteristics to Microbial Community: The Potential Role of DOM Mineralization for Arsenic Release in Shallow Groundwater. Journal of Hazardous Materials, 454: 131566. https://doi.org/10.1016/j.jhazmat.2023.131566
|
Wang, Y. H., Zhang, P., He, C., et al., 2023c. Molecular Signatures of Soil⁃Derived Dissolved Organic Matter Constrained by Mineral Weathering. Fundamental Research, 3(3): 377-383. https://doi.org/10.1016/j.fmre.2022.01.032
|
Wu, P., Fu, Q. L., Zhu, X. D., et al., 2020. Contrasting Impacts of pH on the Abiotic Transformation of Hydrochar⁃Derived Dissolved Organic Matter Mediated by Δ⁃MnO2. Geoderma, 378: 114627. https://doi.org/10.1016/j.geoderma.2020.114627
|
Zark, M., Christoffers, J., Dittmar, T., 2017. Molecular Properties of Deep⁃Sea Dissolved Organic Matter are Predictable by the Central Limit Theorem: Evidence from Tandem FT⁃ICR⁃MS. Marine Chemistry, 191: 9-15. https://doi.org/10.1016/j.marchem.2017.02.005
|
Zhang, F., Jiao, Y. Q., Wang, S. M., et al., 2022a. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 33(2): 325-341. https://doi.org/10.1007/s12583⁃020⁃1364⁃0
|
Zhang, Q., Li, Z. Y., Shen, Z. X., et al., 2022b. Source Profiles of Molecular Structure and Light Absorption of PM2.5 Brown Carbon from Residential Coal Combustion Emission in Northwestern China. Environmental Pollution, 299: 118866. https://doi.org/10.1016/j.envpol.2022.118866
|
Zhang, Z. Q., Sun, Y. L., Chen, C., et al., 2022c. Sources and Processes of Water⁃Soluble and Water⁃Insoluble Organic Aerosol in Cold Season in Beijing, China. Atmospheric Chemistry and Physics, 22(15): 10409-10423. https://doi.org/10.5194/acp⁃22⁃10409⁃2022
|
Zhang, P., Cao, C., Wang, Y. H., et al., 2021. Chemodiversity of Water⁃Extractable Organic Matter in Sediment Columns of a Polluted Urban River in South China. Science of the Total Environment, 777: 146127. https://doi.org/10.1016/j.scitotenv.2021.146127
|
Zhang, R. Y., Qiao, J., Huang, D. K., et al., 2023. Seasonal Variations in the Sources and Influential Factors of Aerosol Dissolved Black Carbon at a Southeast Coastal Site in China. Journal of Geophysical Research: Atmospheres, 128(7): e2023jd038515. https://doi.org/10.1029/2023jd038515
|
Zhou, Y. Q., Zhou, L., Zhang, Y. L., et al., 2022. Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non⁃Pristine Lakes. Environmental Science & Technology, 56(7): 4655-4664. https://doi.org/10.1021/acs.est.1c08003
|
万晓帆, 刘丛丛, 赵德锋, 等, 2023. 页岩油研究热点与发展趋势. 地球科学, 48(2): 793-813. doi: 10.3799/dqkx.2022.443
|