• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    LI Qun, 2002. Study of Subtle Oil/Gas Reservoirs Exploration in Changling Sag of Songliao Basin. Earth Science, 27(6): 770-774.
    Citation: Wang Lu, Jin Zhijun, Lü Zeiyu, Su Yutong, 2024. Research Progress in Underground Hydrogen Storage. Earth Science, 49(6): 2044-2057. doi: 10.3799/dqkx.2024.001

    Research Progress in Underground Hydrogen Storage

    doi: 10.3799/dqkx.2024.001
    • Received Date: 2023-11-21
    • Publish Date: 2024-06-25
    • As the importance of hydrogen continues to grow, large-scale hydrogen storage is receiving increasing focus. In this paper it extensively examines the classification, advantages, and drawbacks of underground hydrogen storage facilities through comprehensive literature research, providing a theoretical foundation for the implementation of such storage systems. Furthermore, it elucidates the interactions between hydrogen and minerals, and highlights the hydrogen adsorption characteristics of clay minerals and coal seams, offering novel insights into addressing challenges related to large-scale hydrogen storage and low-cost adsorption-based storage. The study findings reveal that (1) hydrogen storage facilities are primarily categorized into salt cavern storage, depleted oil and gas reservoir storage, and aquifer storage, with salt cavern storage currently being the most favorable option; (2) variations in temperature, pressure, concentration of fatty acids, and organic acid carbon number affect the hydrogen wettability of minerals, thus impacting caprock sealing capacity; and (3) certain clay minerals, coal seams, and other materials can adsorb hydrogen, presenting potential avenues for new underground hydrogen storage materials. Based on the above research and analysis, the main problems existing in underground hydrogen storage are pointed out, and the future development prospect of underground hydrogen storage is prospected, in order to provide reference for the site selection and implementation of underground hydrogen storage. The feasibility of underground porous material as a new large-scale hydrogen storage material is briefly summarized, in order to contribute to the search for diversified and suitable hydrogen storage materials.

       

    • Ali, A., 2021. Data-Driven Based Machine Learning Models for Predicting the Deliverability of Underground Natural Gas Storage in Salt Caverns. Energy, 229: 120648. https://doi.org/10.1016/j.energy.2021.120648
      Ali, M., Yekeen, N., Pal, N., et al., 2022. Influence of Organic Molecules on Wetting Characteristics of Mica/H2/Brine Systems: Implications for Hydrogen Structural Trapping Capacities. Journal of Colloid and Interface Science, 608: 1739-1749. https://doi.org/10.1016/j.jcis.2021.10.080
      Alonso Frank, M., Meltzer, C., Braunschweig, B., et al., 2017. Functionalization of Steel Surfaces with Organic Acids: Influence on Wetting and Corrosion Behavior. Applied Surface Science, 404: 326-333. https://doi.org/10.1016/j.apsusc.2017.01.199
      Al-Yaseri, A., Jha, N. K., 2021. On Hydrogen Wettability of Basaltic Rock. Journal of Petroleum Science and Engineering, 200: 108387. https://doi.org/10.1016/j.petrol.2021.108387
      Arif, M., Rasool Abid, H., Keshavarz, A., et al., 2022. Hydrogen Storage Potential of Coals as a Function of Pressure, Temperature, and Rank. Journal of Colloid and Interface Science, 620: 86-93. https://doi.org/10.1016/j.jcis.2022.03.138
      Bai, M. X., Song, K. P., Sun, Y. X., et al., 2014. An Overview of Hydrogen Underground Storage Technology and Prospects in China. Journal of Petroleum Science and Engineering, 124: 132-136. https://doi.org/10.1016/j.petrol.2014.09.037
      Ball, M., Wietschel, M., 2009. The Future of Hydrogen-Opportunities and Challenges. International Journal of Hydrogen Energy, 34(2): 615-627. https://doi.org/10.1016/j.ijhydene.2008.11.014
      Bo, Z. K., Zeng, L. P., Chen, Y. Q., et al., 2021. Geochemical Reactions-Induced Hydrogen Loss during Underground Hydrogen Storage in Sandstone Reservoirs. International Journal of Hydrogen Energy, 46(38): 19998-20009. https://doi.org/10.1016/j.ijhydene.2021.03.116
      Çelik, D., Yıldız, M., 2017. Investigation of Hydrogen Production Methods in Accordance with Green Chemistry Principles. International Journal of Hydrogen Energy, 42(36): 23395-23401. https://doi.org/10.1016/j.ijhydene.2017.03.104
      Chouikhi, N., Cecilia, J. A., Vilarrasa-García, E., et al., 2019. CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review. Minerals, 9(9): 514. https://doi.org/10.3390/min9090514
      Conte, M., Iacobazzi, A., Ronchetti, M., et al., 2001. Hydrogen Economy for a Sustainable Development: State-of-the-Art and Technological Perspectives. Journal of Power Sources, 100(1-2): 171-187. https://doi.org/10.1016/s0378-7753(01)00893-x
      Cozzarelli, I. M., Eganhouse, R. P., Baedecker, M. J., 1990. Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Groundwater Environment. Environmental Geology and Water Sciences, 16(2): 135-141. https://doi.org/10.1007/BF01890379
      da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., et al., 2017. Hydrogen: Trends, Production and Characterization of the Main Process Worldwide. International Journal of Hydrogen Energy, 42(4): 2018-2033. https://doi.org/10.1016/j.ijhydene.2016.08.219
      Davoodabadi, A., Mahmoudi, A., Ghasemi, H., 2021. The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium. Science, 24(1): 101907. https://doi.org/10.1016/j.isci.2020.101907
      Dogan, A. U., Dogan, M., Onal, M., et al., 2006. Baseline Studies of the Clay Minerals Society Source Clays: Specific Surface Area by the Brunauer Emmett Teller (BET) Method. Clays and Clay Minerals, 54(1): 62-66. https://doi.org/10.1346/ccmn.2006.0540108
      Dopffel, N., Jansen, S., Gerritse, J., 2021. Microbial Side Effects of Underground Hydrogen Storage-Knowledge Gaps, Risks and Opportunities for Successful Implementation. International Journal of Hydrogen Energy, 46(12): 8594-8606. https://doi.org/10.1016/j.ijhydene.2020.12.058
      Dusselier, M., Davis, M. E., 2018. Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11): 5265-5329. https://doi.org/10.1021/acs.chemrev.7b00738
      Erdoğan Alver, B., 2018. Hydrogen Adsorption on Natural and Sulphuric Acid Treated Sepiolite and Bentonite. International Journal of Hydrogen Energy, 43(2): 831-838. https://doi.org/10.1016/j.ijhydene.2017.10.159
      Esfandyari, H., Haghighat Hoseini, A., Shadizadeh, S. R., et al., 2021. Simultaneous Evaluation of Capillary Pressure and Wettability Alteration Based on the USBM and Imbibition Tests on Carbonate Minerals. Journal of Petroleum Science and Engineering, 200: 108285. https://doi.org/10.1016/j.petrol.2020.108285
      Esfandyari, H., Shadizadeh, S. R., Esmaeilzadeh, F., et al., 2020. Implications of Anionic and Natural Surfactants to Measure Wettability Alteration in EOR Processes. Fuel, 278: 118392. https://doi.org/10.1016/j.fuel.2020.118392
      Hao, Y. M., Ren, K., Cui, C. Z., et al., 2023. Optimization of Cushion Gas Types and Injection Production Parameters for Underground Hydrogen Storage in Aquifers. Energy Storage Science and Technology, 12(9): 2881-2887(in Chinese with English abstract).
      Hashemi, L., Boon, M., Glerum, W., et al., 2022. A Comparative Study for H2-CH4 Mixture Wettability in Sandstone Porous Rocks Relevant to Underground Hydrogen Storage. Advances in Water Resources, 163: 104165. https://doi.org/10.1016/j.advwatres.2022.104165
      He, X. X., Cheng, Y. P., Hu, B., et al., 2020. Effects of Coal Pore Structure on Methane‐Coal Sorption Hysteresis: An Experimental Investigation Based on Fractal Analysis and Hysteresis Evaluation. Fuel, 269: 117438. https://doi.org/10.1016/j.fuel.2020.117438
      Higgs, S., Wang, Y. D., Sun, C. H., et al., 2022. In-Situ Hydrogen Wettability Characterisation for Underground Hydrogen Storage. International Journal of Hydrogen Energy, 47(26): 13062-13075. https://doi.org/10.1016/j.ijhydene.2022.02.022
      Holladay, J. D., Hu, J., King, D. L., et al., 2009. An Overview of Hydrogen Production Technologies. Catalysis Today, 139(4): 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
      Iglauer, S., Abid, H., Al-Yaseri, A., et al., 2021a. Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage. Geophysical Research Letters, 48(10): e2021GL092976. https://doi.org/10.1029/2021gl092976
      Iglauer, S., Ali, M., Keshavarz, A., 2021b. Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage. Geophysical Research Letters, 48(3): e2020GL090814. https://doi.org/10.1029/2020gl090814
      Jin, Z. J., Wang, L., 2022. Does Hydrogen Reservoir Exist in Nature? Earth Science, 47(10): 3858-3859 (in Chinese with English abstract).
      Kanaani, M., Sedaee, B., Asadian-Pakfar, M., 2022. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. Journal of Energy Storage, 45: 103783. https://doi.org/10.1016/j.est.2021.103783
      Keshavarz, A., Abid, H., Ali, M., et al., 2022. Hydrogen Diffusion in Coal: Implications for Hydrogen Geo‐Storage. Journal of Colloid and Interface Science, 608: 1457-1462. https://doi.org/10.1016/j.jcis.2021.10.050
      Lankof, L., Urbańczyk, K., Tarkowski, R., 2022. Assessment of the Potential for Underground Hydrogen Storage in Salt Domes. Renewable and Sustainable Energy Reviews, 160: 112309. https://doi.org/10.1016/j.rser.2022.112309
      Lewandowska-Śmierzchalska, J., Tarkowski, R., Uliasz-Misiak, B., 2018. Screening and Ranking Framework for Underground Hydrogen Storage Site Selection in Poland. International Journal of Hydrogen Energy, 43(9): 4401-4414. https://doi.org/10.1016/j.ijhydene.2018.01.089
      Liu, C. W., Hong, W. M., Wang, D. C., et al., 2023. Research Progress of Underground Hydrogen Storage Technology. Oil & Gas Storage and Transportation, 42(8): 841-855 (in Chinese with English abstract).
      Liu, N., Kovscek, A. R., Fernø, M. A., et al., 2023. Pore-Scale Study of Microbial Hydrogen Consumption and Wettability Alteration during Underground Hydrogen Storage. Frontiers in Energy Research, 11: 1124621. https://doi.org/10.3389/fenrg.2023.1124621
      Lord, A. S., Kobos, P. H., Borns, D. J., 2014. Geologic Storage of Hydrogen: Scaling up to Meet City Transportation Demands. International Journal of Hydrogen Energy, 39(28): 15570-15582. https://doi.org/10.1016/j.ijhydene.2014.07.121
      Lu, A. H., Huang, S. S., Liu, R., et al., 2006. Environmental Effects of Micro- and Ultra-Microchannel Structures of Natural Minerals. Acta Geologica Sinica, 80(2): 161-169. https://doi.org/10.1111/j.1755-6724.2006.tb00225.x
      Luo, X. M., Jia, Z. H., Zhang, H. Y., 2023. Technical Challenges and Outlook of Underground Hydrogen Storage in Depleted Oil and Gas Reservoirs. Oil & Gas Storage and Transportation, 42(9): 1009-1023(in Chinese with English abstract).
      Mu, S. C., 2005. Hydrogen Storage of Minerals. Geotectonica et Metallogenia, 29(1): 122-130(in Chinese with English abstract).
      O'Keefe, J. M. K., Bechtel, A., Christanis, K., et al., 2013. On the Fundamental Difference between Coal Rank and Coal Type. International Journal of Coal Geology, 118: 58-87. https://doi.org/10.1016/j.coal.2013.08.007
      Ortiz, L., Volckaert, G., Mallants, D., 2002. Gas Generation and Migration in Boom Clay, a Potential Host Rock Formation for Nuclear Waste Storage. Engineering Geology, 64(2-3): 287-296. https://doi.org/10.1016/s0013-7952(01)00107-7
      Pan, B., Yin, X., Iglauer, S., 2021. Rock-Fluid Interfacial Tension at Subsurface Conditions: Implications for H2, CO2 and Natural Gas Geo-Storage. International Journal of Hydrogen Energy, 46(50): 25578-25585. https://doi.org/10.1016/j.ijhydene.2021.05.067
      Panfilov, M., 2010. Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media, 85(3): 841-865. https://doi.org/10.1007/s11242-010-9595-7
      Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., et al., 2017. Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling with Different CO2 Properties and Reservoir Depths. Energy & Fuels, 31(5): 5297-5305. https://doi.org/10.1021/acs.energyfuels.6b03321
      Ren, P., Qi, L., Wang, W., et al., 2023. Current Status and Development Trend of Utilization of Underground Salt Cavern Space. Oil-Gasfield Surface Engineering, 42(5): 1-8(in Chinese with English abstract).
      Ren, W. X., Zhou, Y., Guo, J. C., et al., 2022. High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas. Earth Science, 47(5): 1865-1875 (in Chinese with English abstract).
      Simon, J., Ferriz, A. M., Correas, L. C., 2015. HyUnder-Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia, 73: 136-144. https://doi.org/10.1016/j.egypro.2015.07.661
      Tarkowski, R., 2019. Underground Hydrogen Storage: Characteristics and Prospects. Renewable and Sustainable Energy Reviews, 105: 86-94. https://doi.org/10.1016/j.rser.2019.01.051
      Tarkowski, R., Uliasz-Misiak, B., 2022. Towards Underground Hydrogen Storage: A Review of Barriers. Renewable and Sustainable Energy Reviews, 162: 112451. https://doi.org/10.1016/j.rser.2022.112451
      Thaysen, E. M., Armitage, T., Slabon, L., et al., 2023. Microbial Risk Assessment for Underground Hydrogen Storage in Porous Rocks. Fuel, 352: 128852. https://doi.org/10.1016/j.fuel.2023.128852
      Tu, J. W., Sheng, J. J., 2020. Effect of Pressure on Imbibition in Shale Oil Reservoirs with Wettability Considered. Energy & Fuels, 34(4): 4260-4272. https://doi.org/10.1021/acs.energyfuels.0c00034
      Wal, K., Rutkowski, P., Stawiński, W., 2021. Application of Clay Minerals and Their Derivatives in Adsorption from Gaseous Phase. Applied Clay Science, 215: 106323. https://doi.org/10.1016/j.clay.2021.106323
      Wang, L., Cheng, J. W., Jin, Z. J., et al., 2023a. High-Pressure Hydrogen Adsorption in Clay Minerals: Insights on Natural Hydrogen Exploration. Fuel, 344: 127919. https://doi.org/10.1016/j.fuel.2023.127919
      Wang, L., Jin, Z. J., Chen, X., et al., 2023b. The Origin and Occurrence of Natural Hydrogen. Energies, 16(5): 2400. https://doi.org/10.3390/en16052400
      Wang, L., Jin, Z. J., Huang, X. W., et al., 2024a. Hydrogen Adsorption in Porous Geological Materials: A Review. Sustainability, 16(5): 1958. https://doi.org/10.3390/su16051958
      Wang, L., Jin, Z. J., Liu, Q. Y., et al., 2024b. The Occurrence Pattern of Natural Hydrogen in the Songliao Basin, P. R. China: Insights on Natural Hydrogen Exploration. International Journal of Hydrogen Energy, 50: 261-275. https://doi.org/10.1016/j.ijhydene.2023.08.237
      Yan, W., Leng, G. Y., Li, Z. et al., 2023. Progress and Challenges of Underground Hydrogen Storage Technology. Acta Petrolei Sinica, 44(3): 556-568 (in Chinese with English abstract).
      Yekta, A. E., Manceau, J. C., Gaboreau, S., et al., 2018. Determination of Hydrogen-Water Relative Permeability and Capillary Pressure in Sandstone: Application to Underground Hydrogen Injection in Sedimentary Formations. Transport in Porous Media, 122(2): 333-356. https://doi.org/10.1007/s11242-018-1004-7
      Zeng, L. P., Vialle, S., Ennis-King, J., et al., 2023. Role of Geochemical Reactions on Caprock Integrity during Underground Hydrogen Storage. Journal of Energy Storage, 65: 107414. https://doi.org/10.1016/j.est.2023.107414
      Ziemiański, P. P., Derkowski, A., 2022. Structural and Textural Control of High-Pressure Hydrogen Adsorption on Expandable and Non-Expandable Clay Minerals in Geologic Conditions. International Journal of Hydrogen Energy, 47(67): 28794-28805. https://doi.org/10.1016/j.ijhydene.2022.06.204
      Zivar, D., Kumar, S., Foroozesh, J., 2021. Underground Hydrogen Storage: A Comprehensive Review. International Journal of Hydrogen Energy, 46(45): 23436-23462. https://doi.org/10.1016/j.ijhydene.2020.08.138
      郝永卯, 任侃, 崔传智, 等, 2023. 含水层型地下储氢库垫层气类型优选及注采参数优化. 储能科学与技术, 12(9): 2881-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202309019.htm
      金之钧, 王璐, 2022自然界有氢气藏吗? 地球科学, 47(10): 3858-3859. doi: 10.3799/dqkx.2022.840
      刘翠伟, 洪伟民, 王多才, 等, 2023. 地下储氢技术研究进展. 油气储运, 42(8): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202308001.htm
      罗小明, 贾子寒, 张宏阳, 2023. 枯竭油气藏地下储氢技术挑战及展望. 油气储运, 42(9): 1009-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202309006.htm
      木士春, 2005. 矿物储氢研究. 大地构造与成矿学, 29(1): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100F.htm
      任凭, 齐磊, 王玮, 等, 2023. 盐穴空间利用现状及发展趋势. 油气田地面工程, 42(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQTD202305001.htm
      任文希, 周玉, 郭建春, 等, 2022. 适用于中深层-深层页岩气的高压吸附模型. 地球科学, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014
      闫伟, 冷光耀, 李中等, 2023. 氢能地下储存技术进展和挑战. 石油学报, 44(3): 556-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202303013.htm
    • Relative Articles

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (2219) PDF downloads(411) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return