• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Yi Yuhao, Zhu Hongtao, Lu Yaqiu, Li Kai, Meng Zhiyong, Chen Fayao, 2024. Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan. Earth Science, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003
    Citation: Yi Yuhao, Zhu Hongtao, Lu Yaqiu, Li Kai, Meng Zhiyong, Chen Fayao, 2024. Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan. Earth Science, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003

    Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan

    doi: 10.3799/dqkx.2024.003
    • Received Date: 2023-06-13
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • Widespread development of microbiolites or microbial-associated deposits is a common sedimentological response to the aftermath of mass extinctions. Recent studies have suggested that the end-Middle Permian extinction was the sixth largest extinction event in geological history, but the record of microbial deposition after the extinction is still lacking. In this study, the oncoidal limestone at the bottom of Wujiaping Formation of Permian in Well HY3, Hongxing area, East Sichuan, was investigated in detail, and the sedimentary facies evolution of its related strata was also analyzed. From the top of Maokou Formation to the bottom of Changxing Formation in Well HY3, 5 sedimentary facies (assemblages) and 11 sedimentary microfacies are identified. The vertical evolution of sedimentary facies in Wujiaping Formation indicates three third-order sea level change cycles where the overall water depth gradually increases. The oncolite is only found in the mid-late transgression stage of the first sedimentary cycle of Wujiaping stage. Based on the characteristics of core and lamination, the oncoids of Wujiaping Formation can be divided into four types. With the increase of sedimentary water depth, the type parameters, diameter and density of oncoids present three distinct development stages from the bottom upward. The changes of these parameters indicate that suitable hydrodynamic conditions are one of the key factors for the development of oncoids. In addition, the development of oncoids may have been influenced by biological extinction and terrigenous inputs. The oncoidal horizon corresponds to the late Middle Permian extinction period, and the sharp decline of epigenetic biodiversity provides sufficient ecological space for the development of oncolite induced by microbes. In the adjacent strata above the oncoidal limestone or in similar water depth conditions, the terrigenous input may be enhanced due to the closer proximity to coal, resulting in the disappearance of oncolite.

       

    • loading
    • Bambach, R. K., 2006. Phanerozoic Biodiversity Mass Extinctions. Annual Review of Earth and Planetary Sciences, 34: 127-155. https://doi.org/10.1146/annurev.earth.33.092203.122654
      Bao, H. Y., Zhao, S., Liang, B., et al., 2023. Enrichment and High Yield of Shale Gas in the Permian Wujiaping Formation in Hongxing Area of Eastern Sichuan and Its Exploration Implications. China Petroleum Exploration, 28(1): 71-82(in Chinese with English abstract).
      Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471: 51-57. https://doi.org/10.1038/nature09678
      Baud, A., Cirilli, S., Marcoux, J., 1997. Biotic Response to Mass Extinction: The Lowermost Triassic Microbialites. Facies, 36: 238-242. https://doi.org/10.1007/bf02536884
      Bian, L. Z., Huang, Z. C., 1988. On Classification and Paleoecological Significance of Oncolite and Features of Non⁃Skeletal Oncolite in Ordovician, Anhui, China. Acta Palaeontologica Sinica, 27(5): 544-552 (in Chinese with English abstract).
      Campi, M. J., 2012. The Permian—A Time of Major Evolutions and Revolutions in the History of Life. In: Talent, J. A., ed., Earth and Life. Springer, Dordrecht, Netherlands, 705-718. https://doi.org/10.1007/978⁃90⁃481⁃3428⁃1_23
      Chen, F. Y., Xue, W. Q., Yan, J. X., et al., 2021. The Implications of the Giant Bivalve Family Alatoconchidae for the End⁃Guadalupian (Middle Permian) Extinction Event. Geological Journal, 56(12): 6073-6087. https://doi.org/10.1002/gj.4151
      Chen, Z. Q., Tu, C. Y., Pei, Y., et al., 2019. Biosedimentological Features of Major Microbe⁃Metazoan Transitions (MMTs) from Precambrian to Cenozoic. Earth⁃Science Reviews, 189: 21-50. https://doi.org/10.1016/j.earscirev.2019.01.015
      Dahanayake, K., 1977. Classification of Oncoids from the Upper Jurassic Carbonates of the French Jura. Sedimentary Geology, 18(4): 337-353. https://doi.org/10.1016/0037-0738(77)90058⁃6
      Dahanayake, K., 1978. Sequential Position and Environmental Significance of Different Types of Oncoids. Sedimentary Geology, 20: 301-316. https://doi.org/10.1016/0037⁃0738(78)90060⁃x
      Dai, M. Y., Qi, Y. A., Chang, Y. G., et al., 2014. Oncoids and Their Significance from the Second Member of the Mantou Formation (Cambrian Series 3), Dengfeng Area, Henan. Acta Sedimentologica Sinica, 32(3): 410-417 (in Chinese with English abstract).
      Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea⁃Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648
      He, B., Xu, Y. G., Guan, J. P., et al., 2010. Paleokarst on the Top of the Maokou Formation: Further Evidence for Domal Crustal Uplift Prior to the Emeishan Flood Volcanism. Lithos, 119(1-2): 1-9. https://doi.org/10.1016/j.lithos.2010.07.019
      He, Z. A., 1982. Classification and Origin of Oncolite. Oil & Gas Geology, 3(1): 41-48, 99-100 (in Chinese with English abstract).
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2019a. Biotic Responses to Volatile Volcanism and Environmental Stresses over the Guadalupian⁃Lopingian (Permian) Transition. Geology, 47(2): 175-178. https://doi.org/10.1130/g45283.1
      Huang, Y. G., Chen, Z. Q., Zhao, L. S., et al., 2019b. Restoration of Reef Ecosystems Following the Guadalupian-Lopingian Boundary Mass Extinction: Evidence from the Laibin Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 8-22. https://doi.org/10.1016/j.palaeo.2017.08.027 doi: 10.3969/j.issn.1000-0569.2007.12.019
      Jiang, Y. H., Yue, W. Z., Ye, Z. Z., 1990. Oncoids in the Carbonate Rocks of Chuanshan Formation from Yangtze Terrane. Volcanology & Mineral Resources, 11(2): 57-72 (in Chinese).
      Jin, Y. G., Shen, S. Z., Henderson, C. M., et al., 2006. The Global Stratotype Section and Point (GSSP) for the Boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4): 253-262. https://doi.org/10.18814/epiiugs/2006/v29i4/003
      Kershaw, S., Crasquin, S., Li, Y., et al., 2012. Microbialites and Global Environmental Change across the Permian⁃Triassic Boundary: A Synthesis. Geobiology, 10(1): 25-47. https://doi.org/10.1111/j.1472⁃4669.2011.00302.x
      Kolodka, C., Vennin, E., Vachard, D., et al., 2012. Timing and Progression of the End⁃Guadalupian Crisis in the Fars Province (Dalan Formation, Kuh⁃E Gakhum, Iran) Constrained by Foraminifers and Other Carbonate Microfossils. Facies, 58(1): 131-153. https://doi.org/10.1007/s10347⁃011⁃0265⁃1
      Li, F., Yi, C. H., Li, H., et al., 2022. Recent Advances in Ooid Microbial Origin: A Review. Acta Sedimentologica Sinica, 40(2): 319-334 (in Chinese with English abstract).
      Li, X. Z., Guan, S. R., Xie, Q. B., et al., 2000. The Oncoids Genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin. Acta Petrologica Sinica, 16(2): 261-268 (in Chinese with English abstract).
      Liu, B. J., Xu, X. S., 1994. Lithofacies Paleogeography Atlas of South China. Science Press, Beijing, 134-138 (in Chinese).
      Mata, S. A., Bottjer, D. J., 2012. Microbes and Mass Extinctions: Paleoenvironmental Distribution of Microbialites during Times of Biotic Crisis. Geobiology, 10(1): 3-24. https://doi.org/10.1111/j.1472⁃4669.2011.00305.x
      Mou, C. L., 2022. Suggested Naming and Classification of the Word Facies. Sedimentary Geology and Tethyan Geology, 42(3): 331-339 (in Chinese with English abstract).
      Peryt, T. M., Peryt, D., 2021. Foraminiferal Micro⁃Buildups ("Reefs") in the Wuchiapingian Basin Facies of the Basal Zechstein Carbonates in Western Poland. Journal of Palaeogeography, 10(4): 463-481. https://doi.org/10.1016/j.jop.2021.08.001
      Peryt, T. M., Piatkowski, T. S., 1977. Stromatolites from the Zechstein Limestone (Upper Permian) of Poland. In: Flügel, E., ed., Fossil Algae. Springer, Berlin, Heidelberg, 124-135. https://doi.org/10.1007/978⁃3⁃642⁃66516⁃5_13
      Peryt, T. M., Raczyński, P., Peryt, D., et al., 2012. Upper Permian Reef Complex in the Basinal Facies of the Zechstein Limestone (Ca1), Western Poland. Geological Journal, 47(5): 537-552. https://doi.org/10.1002/gj.2440
      Peterffy, O., Calner, M., Vajda, V., 2016. Early Jurassic Microbial Mats—A Potential Response to Reduced Biotic Activity in the Aftermath of the End⁃Triassic Mass Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 76-85. https://doi.org/10.1016/j.palaeo.2015.12.024
      Qin, J. X., Zeng, Y. F., Chen, H. D., et al., 1998. Permian Sequence Stratigraphy and Sea⁃Level Changes in Southwestern China. Sedimentary Facies and Palaeogeography, 18(1): 19-35 (in Chinese with English abstract).
      Rampino, M. R., Shen, S. Z., 2021. The End⁃Guadalupian (259.8 Ma) Biodiversity Crisis: The Sixth Major Mass Extinction? Historical Biology, 33(5): 716-722. https://doi.org/10.1080/08912963.2019.1658096
      Raup, D. M., Jr Sepkoski, J. J., 1982. Mass Extinctions in the Marine Fossil Record. Science, 215(4539): 1501-1503. https://doi.org/10.1126/science.215.4539.1501
      Riding, R., 2006. Microbial Carbonate Abundance Compared with Fluctuations in Metazoan Diversity over Geological Time. Sedimentary Geology, 185(3-4): 229-238. https://doi.org/10.1016/j.sedgeo.2005.12.015
      Riding, R., Liang, L. Y., 2005. Geobiology of Microbial Carbonates: Metazoan and Seawater Saturation State Influences on Secular Trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 101-115. https://doi.org/10.1016/j.palaeo.2004.11.018
      Schubert, J. K., Bottjer, D. J., 1992. Early Triassic Stromatolites as Post⁃Mass Extinction Disaster Forms. Geology, 20(10): 883. https://doi.org/10.1130/0091⁃7613(1992)0200883:etsapm>2.3.co;2 doi: 10.1130/0091⁃7613(1992)0200883:etsapm>2.3.co;2
      Sepkoski, J. J., 1986. Phanerozoic Overview of Mass Extinction. In: Raup., D. M., Jablonski, D., eds., Patterns and Processes in the History of Life. Springer, Berlin, Heidelberg, 277-295.
      Sepkoski, J. J., 1996. Patterns of Phanerozoic Extinction: A Perspective from Global Data Bases. In: Walliser O. H., ed., Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin, Heidelberg, 35-51. https://doi.org/10.1007/978⁃3⁃642⁃79634⁃0_4
      Sheehan, P. M., Harris, M. T., 2004. Microbialite Resurgence after the Late Ordovician Extinction. Nature, 430: 75-78. https://doi.org/10.1038/nature02654
      Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science China: Earth Sciences, 49(1): 160-193.
      Shi, G. R., Chen, Z. Q., 2006. Lower Permian Oncolites from South China: Implications for Equatorial Sea⁃Level Responses to Late Palaeozoic Gondwanan Glaciation. Journal of Asian Earth Sciences, 26(3/4): 424-436. https://doi.org/10.1016/j.jseaes.2005.10.009
      Stanley, S. M., Yang, X., 1994. A Double Mass Extinction at the End of the Paleozoic Era. Science, 266(5189): 1340-1344. https://doi.org/10.1126/science.266.5189.1340
      Tang, X., Liu, S. G., Song, J. M., et al., 2018. Characteristics and Environmental Significance of the Sinian Dengying Formation Oncoids in the Northeastern Sichuan Basin. Acta Sedimentologica Sinica, 36(2): 232-242 (in Chinese with English abstract).
      Tian, T. Z., Li, Z. Q., Lu, P. D., et al., 2023. Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section. Earth Science, 48(4): 1568-1586(in Chinese with English abstract).
      Védrine, S., Strasser, A., Hug, W., 2007. Oncoid Growth and Distribution Controlled by Sea⁃Level Fluctuations and Climate (Late Oxfordian, Swiss Jura Mountains). Facies, 53(4): 535-552. https://doi.org/10.1007/s10347⁃007⁃0114⁃4
      Wang, G. Q., Xia, W. C., 2004. Upper Permian Conodonts Zonation and Its Implication in Western Hubei Province. Geological Science and Technology Information, 23(4): 30-34 (in Chinese with English abstract).
      Wang, X., Foster, W. J., Yan, J., et al., 2019. Delayed Recovery of Metazoan Reefs on the Laibin⁃Heshan Platform Margin Following the Middle Permian (Capitanian) Mass Extinction. Global and Planetary Change, 180: 1-15. https://doi.org/10.1016/j.gloplacha.2019.05.005
      Wang, C. S., Chen, H. D., Shou, J. F., et al., 1999. Characteristics and Correlation of Permian Depositional Sequences in South China. Acta Sedimentologica Sinica, 17(4): 499-509 (in Chinese with English abstract).
      Wignall, P. B., Sun, Y. D., Bond, D. P. G., et al., 2009. Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. Science, 324(5931): 1179-1182. https://doi.org/10.1126/science.1171956
      Wu, K., Tong, J. N., Li, H. J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic⁃Mesozoic Upheavals. Earth Science, 47(3): 1012-1037 (in Chinese with English abstract).
      Yang, B. Z., 2007. Evolution of Conodont and Palaeogeographic Characteristics in Middle to Upper Permian at North Part of the Yangtze Platform (Dissertation). China University of Geosciences, Wuhan, 8-27(in Chinese with English abstract).
      Yang, R. C., Fan, A. P., Han, Z. Z., et al., 2011. Status and Prospect of Studies on Oncoid. Advances in Earth Science, 26(5): 465-474 (in Chinese with English abstract).
      Yao, L., Aretz, M., Chen, J. T., et al., 2016. Global Microbial Carbonate Proliferation after the End⁃Devonian Mass Extinction: Mainly Controlled by Demise of Skeletal Bioconstructors. Scientific Reports, 6: 39694. https://doi.org/10.1038/srep39694
      Zeng, Y. F., Zhang, J. Q., Lin., W. Q., et al., 1983. Types and Environmental Significance of Oncoids from Yongxian Formation of the Upper Devonian in Siding, Guangxi. Acta Sedimentologica Sinica, 1(1): 42-49, 140 (in Chinese with English abstract).
      Zhang, L., Wu, J., Yuan, D. X., et al., 2021. Integrated Radiolarian and Conodont Biostratigraphy of the Middle to Late Permian Linghao Formation in Northwestern Guangxi, South China. Acta Geologica Sinica (English Edition), 95(6): 1984-1997. https://doi.org/10.1111/1755⁃6724.14721
      Zhang, L. L., Zhang, N., Xia, W. C., 2007. Conodont Succession in the Guadalupian⁃Lopingian Boundary Interval of the Maoershan Section, Hubei Province, China. Micropaleontology, 53(6): 433-446. https://doi.org/10.2113/gsmicropal.53.6.433
      Zhang, Y., Chang, S., Feng, Q. L., et al., 2023. A Diverse Microfossil Assemblage from the Ediacaran⁃Cambrian Deep⁃Water Chert of the Liuchapo Formation in Guizhou Province, South China. Journal of Earth Science, 34(2): 398-408. https://doi.org/10.1007/s12583⁃021⁃1485⁃0
      Zhang, Y. Y., Yang, H. J., Wang, J. P., et al., 2009. Oncolites from the Lianglitag Formation(Kaitian, Upper Ordovician), Tazhong, Tarim Block, NW China. Acta Micropalaeontologica Sinica, 26(3): 234-242 (in Chinese with English abstract).
      Zheng, S. C., Feng, Q. L., van de Velde, S., et al., 2022. Microfossil Assemblages and Indication of the Source and Preservation Pattern of Organic Matter from the Early Cambrian in South China. Journal of Earth Science, 33(3): 802-819. https://doi.org/10.1007/s12583⁃020⁃1117⁃0
      包汉勇, 赵帅, 梁榜, 等, 2023. 川东红星地区二叠系吴家坪组页岩气富集高产主控因素与勘探启示. 中国石油勘探, 28(1): 71-82.
      边立曾, 黄志诚, 1988. 核形石的分类及生态研究. 古生物学报, 27(5): 544-552, 666-670.
      代明月, 齐永安, 常玉光, 等, 2014. 河南登封地区寒武系第三统馒头组二段中的核形石及其意义. 沉积学报, 32(3): 410-417.
      贺自爱, 1982. 藻灰结核分类及其成因. 石油与天然气地质, 3(1): 41-48.
      姜月华, 岳文浙, 业治铮, 1990. 扬子地体船山组碳酸盐岩中的核形石. 中国地质科学院南京地质矿产研究所所刊, 11(2): 57-72.
      李飞, 易楚恒, 李红, 等, 2022. 微生物成因鲕粒研究进展. 沉积学报, 40(2): 319-334.
      李熙哲, 管守锐, 谢庆宾, 等, 2000. 平邑盆地下第三系官中段核形石成因分析. 岩石学报, 16(2): 261-268.
      刘宝珺, 许效松, 1994. 中国南方岩相古地理图集. 北京: 科学出版社.
      牟传龙, 2022. 关于相的命名及其分类的建议. 沉积与特提斯地质, 42(3): 331-339.
      沈树忠, 张华, 张以春, 等, 2019. 中国二叠纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 160-193.
      覃建雄, 曾允孚, 陈洪德, 等, 1998. 西南地区二叠纪层序地层及海平面变化. 岩相古地理, (1): 19-35.
      唐玄, 刘树根, 宋金民, 等, 2018. 四川盆地东北缘灯影组核形石特征及环境意义. 沉积学报, 36(2): 232-242.
      田腾振, 李泽奇, 鲁鹏达, 等, 2023. 震旦系灯影组核形石白云岩成因机制及其意义: 以柳湾剖面为例. 地球科学, 48(4): 1568-1586. doi: 10.3799/dqkx.2022.358
      王成善, 陈洪德, 寿建峰, 等, 1999. 中国南方二叠纪层序地层划分与对比. 沉积学报, 17(4): 499-509.
      王国庆, 夏文臣, 2004. 鄂西地区上二叠统的牙形石及其分带意义. 地质科技情报, 23(4): 30-34.
      吴奎, 童金南, 李红军, 等, 2022. 全球古-中生代之交牙形石研究进展. 地球科学, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
      杨宝忠, 2007. 扬子北缘中-上二叠统牙形石演化及古地理特征(博士学位论文). 武汉: 中国地质大学, 8-27.
      杨仁超, 樊爱萍, 韩作振, 等, 2011. 核形石研究现状与展望. 地球科学进展, 26(5): 465-474.
      曾允孚, 张锦泉, 林文球, 等, 1983. 广西泗顶泥盆系上统融县组中核形石的类型及其环境意义. 沉积学报, 1(1): 42-49, 140.
      张园园, 杨海军, 王建坡, 等, 2009. 塔里木板块塔中上奥陶统良里塔格组的核形石. 微体古生物学报, 26(3): 234-242.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (290) PDF downloads(35) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return