• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Xu Shumei, Wang Linhua, Li Sanzhong, Liu Yongjiang, Zi Ke, Quan Ri, Shu Pengcheng, Zhou Yue, Guo Ruijie, Zhang Baozhu, Wang Manxi, Liu Zhengdong, 2025. The Evolution of the Taiwan Forearc Basin Constrained by the Volcanic Activities of the North Luzon Island Arc and the Orogenic Events of the Taiwan Orogen Belt. Earth Science, 50(2): 466-477. doi: 10.3799/dqkx.2024.004
    Citation: Xu Shumei, Wang Linhua, Li Sanzhong, Liu Yongjiang, Zi Ke, Quan Ri, Shu Pengcheng, Zhou Yue, Guo Ruijie, Zhang Baozhu, Wang Manxi, Liu Zhengdong, 2025. The Evolution of the Taiwan Forearc Basin Constrained by the Volcanic Activities of the North Luzon Island Arc and the Orogenic Events of the Taiwan Orogen Belt. Earth Science, 50(2): 466-477. doi: 10.3799/dqkx.2024.004

    The Evolution of the Taiwan Forearc Basin Constrained by the Volcanic Activities of the North Luzon Island Arc and the Orogenic Events of the Taiwan Orogen Belt

    doi: 10.3799/dqkx.2024.004
    • Received Date: 2024-01-12
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • The paper aims to analysis the accommodation feature, basin boundaries and basement properties of the Taiwan forearc basin, and probe into the sequence basic configuration, main controlling factors and evolution stage of the Taiwan forearc basin. Based on the orogenic events, such as the initial and normal subduction of the South China Sea Plate, slabs under plating, accretion, exhumation, uplift and denudation of the accretionary prism and the series of volcanic activities of the North Luzon Island Arc, combined with the sequence configuration analysis of the seismic profiles, this paper will study the basin character, boundary nature and evolutionary stages of the Taiwan forearc basin in more depth. The evolution history of Taiwan forearc basin can be divided into three stages: "rectangular rift basin in the spreading period", "wedge-shaped forearc basin in the initial collision period" and "sheet (residual) forearc basin stage in the arc-continental collision period". The initially eastern boundary of the rectangular rift basin is the South China Sea oceanic crust and later the North Luzon Island Arc, the western boundary is the Philippine Sea oceanic crust, and the basement is forearc split mantle. The eastern and western boundaries of the wedge-shaped forearc basin are the North Luzon Arc and the subducted South China Sea Plate margin which is thickened by the under platings labs respectively, and part of the north Luzon Island Arc gradually evolved into the basement of the forearc basin. The eastern boundary of the deformed residual forearc basin is the North Luzon Island Arc, and the western boundary is the Taiwan accretionary wedge that has been exhumed and continuously uplifted this period.

       

    • loading
    • Beyssac, O., Simoes, M., Avouac, J. P., et al., 2007. Late Cenozoic Metamorphic Evolution and Exhumation of Taiwan. Tectonics, 26: TC6001. https://doi.org/10.1029/2006TC002064
      Chang, C. P., Angelier, J., Huang, C. Y., 2000. Origin and Evolution of a Mélange: the Active Plate Boundary and Suture Zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(3): 43-62.
      Chen, C. T., Chan, Y. C., Lo, C. H., et al., 2016. Growth of Mica Porphyroblast under Low Grade Metamorphism: a Taiwanese Case Using In-Situ 40Ar/39Ar Laser Microprobe Analyses. Journal of Structural Geology, 92: 1-11. doi: 10.1016/j.jsg.2016.09.005
      Chen, C. T., Chan, Y. C. C., Lo, H. H., et al., 2018. Basal Accretion, a Major Mechanism for Mountain Building in Taiwan Revealed in Rock Thermal History. Journal of Asian Earth Science, 152: 80-90. doi: 10.1016/j.jseaes.2017.11.030
      Chen, W. H., Huang, C. Y., Lin, Y. J., et al., 2015. Depleted Deep South China Sea δ13C Paleoceanographic Events in Response to Tectonic Evolution in Taiwan-Luzon Strait since Middle Miocene. Deep-Sea Research II, 122: 195-225. https://doi.org/10.1016/j.dsr2.2015.02.005
      Chen, W. S., 2009. Tectonostratigraphic Framework and Age of the Volcanic-Arc and Collision Basins in the Coastal Range, Eastern Taiwan. Western Pacific Earth Sciences, 9(6): 67-98(in Chinese with English abstract).
      Chen, W. S., Chung, H. Y. Chou, Z., et al., 2017. A Reinterpretation of the Metamorphic Yuli Belt: Evidence for a Middle-Late Miocene Accretionary Prism in Eastern Taiwan. Tectonics, 36: 188-206. https://doi.org/10.1002/2016TC004383
      Chi, W. C., Chen, L. W., Liu, C. S., et al., 2014. Development of Arc-Continent Collision Mélanges: Linking Onshore Geological and Offshore Geophysical Observations of the Pliocene Lichi Mélange, Southern Taiwan and Northern Luzon Arc, Western Pacific. Tectonophysics, 636(6): 70-82. https://doi.org/10.1016/j.tecto.2014.08.009
      Chim, L. K., Yen, J. Y., Huang, S. Y., et al., 2018. Using Raman Spectroscopy of Carbonaceous Materials to Track Exhumation of an Active Orogenic Belt: an Example from Eastern Taiwan. Journal of Asian Earth Sciences, 164: 248-259. doi: 10.1016/j.jseaes.2018.06.030
      Geng, W., Zhang, X. H., Liu, C. L., 2018. Petrology and U-Pb Geochronology of the Serpentine in the Lichi Mélange of Eastern Taiwan and Their Tectonic Implications. Marine Geology & Quaternary Geology, 38(2): 129-135(in Chinese).
      Hirtzel, J., Chi, W. C., Reed, D., et al., 2009. Destruction of Luzon Forearc Basin from Subduction to Taiwan Arc-Continent Collision. Tectonophysics, 479(1): 43-51.
      Hsu, S. K., Sibuet, J. C., 1995. Is Taiwan the Result of Arc-Continent or Arc-Arc Collision? Earth and Planetary Science Letters, 136: 315-324. doi: 10.1016/0012-821X(95)00190-N
      Hsu, W. H., Byrne, T. B., Ouimet, W., et al. 2016. Pleistocene Onset of Rapid, Punctuated Exhumation in the Eastern Central Range of the Taiwan Orogenic Belt. Geology, 44: 719-722.
      Huang, C. Y., Chen, W. H., Wang, M. H., et al., 2018. Juxtaposed Sequence Stratigraphy, Temporal-Spatial Variations of Sedimentation and Development of Modern-Forming Forearc Lichi Mélange in North Luzon Trough Forearc Basin Onshore and Offshore Eastern : an Overview. Earth-Science Reviews, 182: 102-140. https://doi.org/10.1016/j.earscirev.2018.01.015
      Huang, C. Y., Yuan, P. B., Tsao, S. J., 2006. Temporal and Spatial Records of Active Arc-Continent Collision in Taiwan: A Synthesis. Geological Society of America, 118 (3/4): 274-288.
      Kirstein, L. A., Fellin, M. G., Willett, S. D., et al., 2010. Pliocene Onset of Rapid Exhumation in during Arc-Continent Collision: New Insights from Detrital Thermochronometry. Basin Research, 22(3): 270-285. https://doi.org/10.1111/j.1365-2117.2009.00426.x
      Lai, L. S., Dorsey, R. J., Horng, C. S., et al., 2021. Polygenetic Mélange in the Retrowedge Foredeep of an Active Arc-Continent Collision, Coastal Range of Eastern. Sedimentary Geology, 418: 105901. https://doi.org/10.1016/j.sedgeo.2021.105901
      Lai, Y. M., 2012. Evolution of Volcanoes and Magmas in the Northern Luzon Arc(Dissertation). National Taiwan University, Taipei, 1-236(in Chinese with English abstract).
      Lai, Y. M., Song, S. R., 2013. The Volcanoes of an Oceanic Arc from Origin to Destruction: a Case from the Northern Luzon Arc. Journal of Asian Earth Sciences, 74: 97-112. https://doi.org/10.1016/j.jseaes.2013.03.021
      Lai, Y. M., Song, S. R., Iizuka, Y., 2008. Magma Mingling in the Tungho Area, Coastal Range of Eastern. Journal of Volcanology and Geothermal Research, 178(4): 608-623. https://doi.org/10.1016/j.jvolgeores.2008.05.020
      Liu, T. K., Hsieh, S., Chen, Y. G., et al., 2001. Thermo-Kinematic Evolution of the Oblique-Collision Mountain Belt as Revealed by Zircon Fission Track Dating. Earth and Planetary Science Letters, 186(1): 45-56. https://doi.org/10.1016/S0012-821X(01)00232-1
      Lo, C. H., Onstott, T. C., 1995. Rejuvenation of KAr Systems for Minerals in the Mountain Belt. Earth and Planetary Science Letters, 131(1/2): 71-98. https://doi.org/10.1016/0012-821X(95)00011-Z
      Lüschen, E., Müller, C., Kopp, H., et al., 2011. Structure, Evolution and Tectonic Activity of the Eastern Sunda Forearc, Indonesia, from Marine Seismic Investigations. Tectonophysics, 508(1/2/3/4): 6-21. https://doi.org/10.1016/j.tecto.2010.06.008
      Malavieille, J., Trullenque, G., 2009. Consequences of Continental Subduction on Forearc Basin and Accretionary Wedge Deformation in SE : Insights from Analogue Modeling. Tectonophysics, 466(3/4): 377-394. https://doi.org/10.1016/j.tecto.2007.11.016
      Peng, X., Li, C. F., Song, T. R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255(in Chinese with English abstract).
      Sandmann, S., Nagel, T. J., Froitzheim, N., et al., 2015. Late Miocene to Early Pliocene Blueschist from and Its Exhumation via Forearc Extraction. Terra Nova, 27(4): 285-291. https://doi.org/10.1111/ter.12158
      Song, S. R., Lo, H. J., 2002. Lithofacies of Volcanic Rocks in the Central Coastal Range, Eastern : Implications for Island Arc Evolution. Journal of Asian Earth Sciences, 21(1): 23-38. https://doi.org/10.1016/S1367-9120(02)00003-2
      Speed, R. C., Larue, D. K., 1982. Barbados: Architecture and Implications for Accretion. Journal of Geophysical Research: Solid Earth, 87(B5): 3633-3643. https://doi.org/10.1029/JB087iB05p03633
      Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 3-1-3-38. https://doi.org/10.1029/2001RG000108
      Wade, B. S., Pearson, P. N., Berggren, W. A., et al., 2011. Review and Revision of Cenozoic Tropical Planktonic Foraminiferal Biostratigraphy and Calibration to the Geomagnetic Polarity and Astronomical Time Scale. Earth-Science Reviews, 104(1/2/3): 111-142. https://doi.org/10.1016/j.earscirev.2010.09.003
      Xiao, W., Song, D., Zhang, J., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106(in Chinese with English abstract).
      Xie, X., Zhao, S., Ren, J., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post-Spreading Period. Earth Science, 47(10): 3524-3542(in Chinese with English abstract).
      Xu, S. M., Liu, X., Li, S. Z., et al., 2022. Subduction-Collisional Processes between the Eurasian and Philippine Sea Plates: Constraints from Thermal-Age Paths of the Orogen. Gondwana Research, 102: 385-393. https://doi.org/10.1016/j.gr.2020.07.001
      Yui, T. F., Maki, K., Lan, C. Y., et al., 2012. Detrital Zircons from the Tananao Metamorphic Complex of : Implications for Sediment Provenance and Mesozoic Tectonics. Tectonophysics, 541: 31-42. https://doi.org/10.1016/j.tecto.2012.03.013
      陈文山, 2009. 海岸山脉火山岛弧与碰撞盆地的地层架构与年代. 西太平洋地质科学, 9(6): 67-98.
      耿威, 张训华, 刘昌岭, 等, 2018. 台湾利吉混杂岩中蛇纹岩岩石学和U-Pb年代学及其地质意义. 海洋地质与第四纪地质, 38(2): 129-135.
      赖昱铭, 2012. 北吕宋岛弧的火山与岩浆演化(博士毕业论文). 台北: 台湾大学1-236.
      彭希, 李春峰, 宋陶然, 等, 2022. 南海北部洋-陆过渡带深部结构与岩石圈破裂过程. 地球科学, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366
      肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
      解习农, 赵帅, 任建业, 等, 2022. 南海后扩张期大陆边缘闭合过程及成因机制. 地球科学, 47(10): 3524-3542. doi: 10.3799/dqkx.2022.265
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (224) PDF downloads(39) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return