• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Tao Lirong, Cao Shuyun, Li Wenyuan, Cheng Xuemei, Wang Haobo, Dong Yanlong, 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007
    Citation: Tao Lirong, Cao Shuyun, Li Wenyuan, Cheng Xuemei, Wang Haobo, Dong Yanlong, 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007

    Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust

    doi: 10.3799/dqkx.2024.007
    • Received Date: 2023-11-09
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • Anatexis is significant for the evolution and rheological properties of the continental crust, linking metamorphism, tectonic deformation, and magmatic activities in deep crust. According to the presence or absence of free water, anatexis can be divided into water-fluxed melting and dehydration melting. Dehydration melting involves the breakdown of hydrous phases, such as muscovite, biotite or amphibole. Generally, dehydration melting reactions begin at ~650 ℃ and produce melt, peritectic garnet and K-feldspar. Melt resulting from dehydration melting is water unsaturated, characterized by high Rb, high Rb/Sr ratio, high 87Sr/86Sr ratio, and low Sr, Ba, Ca. Melt productivity of dehydration melting reaction is controlled by P-T condition and water content in rock, and it is only possible to produce a large amount of melt at granulite facies. Water-fluxed melting reactions involve the presence of free water. Its most significant feature is that the temperature required is relatively low, and can produce voluminous melting at amphibolite facies. The resulting melt is water-saturated or water unsaturated that can extract from the source. Melt derived from water-fluxed melting reactions has high Sr, Ba, Ca, low Rb/Sr ratio and low Rb. Anatexis has a profound impact on the thermodynamic and rheological properties of the rocks. At the same time, the movement of melt out of the lower continental crust promotes the chemical differentiation of the crust and forms a wide range of leucogranite, playing a crucial role in the origin, reworking, and stability of the continental crust.

       

    • loading
    • Acosta-Vigil, A., London, D., Morgan, G. B., 2006. Experiments on the Kinetics of Partial Melting of a Leucogranite at 200 MPa H2O and 690-800 ℃: Compositional Variability of Melts during the Onset of H2O-Saturated Crustal Anatexis. Contributions to Mineralogy and Petrology, 151(5): 539-557. https://doi.org/10.1007/s00410-006-0081-8
      Acosta-Vigil, A., London, D., Morgan, G. B., et al. , 2003. Solubility of Excess Alumina in Hydrous Granitic Melts in Equilibrium with Peraluminous Minerals at 700-800 ℃ and 200 MPa, and Applications of the Aluminum Saturation Index. Contributions to Mineralogy and Petrology, 146(1): 100-119. https://doi.org/10.1007/s00410-003-0486-6
      Aikman, A. B., Harrison, T. M., Hermann, J., 2012. The Origin of Eo- and Neo-Himalayan Granitoids, Eastern Tibet. Journal of Asian Earth Sciences, 58: 143-157. https://doi.org/10.1016/j.jseaes.2012.05.018
      Aranovich, L. Y., Makhluf, A. R., Manning, C. E., et al., 2014. Dehydration Melting and the Relationship between Granites and Granulites. Precambrian Research, 253: 26-37. https://doi.org/10.1016/j.precamres.2014.07.004
      Aranovich, L. Y., Newton, R. C., Manning, C. E., 2013. Brine-Assisted Anatexis: Experimental Melting in the System Haplogranite-H2O-NaCl-KCl at Deep-Crustal Conditions. Earth and Planetary Science Letters, 374: 111-120. https://doi.org/10.1016/j.epsl.2013.05.027
      Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
      Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2004. Crustal Channel Flows: 1. Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research, 109(B6): B06406. https://doi.org/10.1029/2003jb002809
      Berger, A., Burri, T., Alt-Epping, P., et al., 2008. Tectonically Controlled Fluid Flow and Water-Assisted Melting in the Middle Crust: An Example from the Central Alps. Lithos, 102(3-4): 598-615. https://doi.org/10.1016/j.lithos.2007.07.027
      Brown, M., Korhonen, F. J., 2009. Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks. In: Gupta, A. K., Dasgupta, S., eds., Physics and Chemistry of the Earth's Interior. Springer, New York, U. S. A. . https://doi.org/10.1007/978-1-4419-0346-4_4
      Cao, H. W., Pei, Q. M., Santosh, M., et al., 2022. Himalayan Leucogranites: A Review of Geochemical and Isotopic Characteristics, Timing of Formation, Genesis, and Rare Metal Mineralization. Earth-Science Reviews, 234: 104229. https://doi.org/10.1016/j.earscirev.2022.104229
      Cao, S. Y., Neubauer, F., 2016. Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries. Earth-Science Reviews, 162: 155-176. https://doi.org/10.1016/j.earscirev.2016.09.010
      Cao, S. Y., Neubauer, F., 2019. Graphitic Material in Fault Zones: Implications for Fault Strength and Carbon Cycle. Earth-Science Reviews, 194: 109-124. https://doi.org/10.1016/j.earscirev.2019.05.008
      Carosi, R., Montomoli, C., Iaccarino, S., 2018.20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Science Reviews, 177: 124-138. https://doi.org/10.1016/j.earscirev.2017.11.006
      Cartwright, L., Buick, S. L., 1998. The Link between Oxygen Isotope Resetting, Partial Melting, and Fluid Flow in Metamorphic Terrains. Terra Nova, 10(2): 81-85. https://doi.org/10.1046/j.1365-3121.1998.00171.x
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chen, X. Y., Liu, J. L., Tang, Y., et al., 2015. Contrasting Exhumation Histories along a Crustal-Scale Strike-Slip Fault Zone: The Eocene to Miocene Ailao Shan-Red River Shear Zone in Southeastern Tibet. Journal of Asian Earth Sciences, 114: 174-187. https://doi.org/10.1016/j.jseaes.2015.05.020
      Cheng, X. M., Cao, S. Y., Li, J. Y., et al., 2022. Early Paleoproterozoic Tectono-Magmatic and Metamorphic Evolution of the Yuanmou Complex in the Southwestern Yangzte Block. Precambrian Research, 371: 106572. https://doi.org/10.1016/j.precamres.2022.106572
      Cipar, J. H., Garber, J. M., Kylander-Clark, A. R. C., et al., 2020. Active Crustal Differentiation beneath the Rio Grande Rift. Nature Geoscience, 13(11): 758-763. https://doi.org/10.1038/s41561-020-0640-z
      Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      Clemens, J., Watkins, J., 2001. The Fluid Regime of High-Temperature Metamorphism during Granitoid Magma Genesis. Contributions to Mineralogy and Petrology, 140(5): 600-606. https://doi.org/10.1007/s004100000205
      Clemens, J. D., 1990. The Granulite-Granite Connexion. In: Vielzeuf, D., Vidal, P., eds., Granulites and Crustal Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_3
      Clemens, J. D., Droop, G. T. R., 1998. Fluids, P-T Paths and the Fates of Anatectic Melts in the Earth's Crust. Lithos, 44(1-2): 21-36. https://doi.org/10.1016/s0024-4937(98)00020-6
      Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold; Drenched, Damp or Dry? Earth-Science Reviews, 200: 102982. https://doi.org/10.1016/j.earscirev.2019.102982
      Collins, W. J., Huang, H. Q., Jiang, X. Y., 2016. Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 44(2): 143-146. https://doi.org/10.1130/g37398.1
      Collins, W. J., Murphy, J. B., Blereau, E., et al., 2021. Water Availability Controls Crustal Melting Temperatures. Lithos, 402-403: 106351. https://doi.org/10.1016/j.lithos.2021.106351
      Daniel, C. G., Hollister, L. S., Parrish, R. R., et al., 2003. Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya. Journal of Metamorphic Geology, 21(4): 317-334. https://doi.org/10.1046/j.1525-1314.2003.00445.x
      Dewey, J. F., Robb, L., van Schalkwyk, L., 2006. Did Bushmanland Extensionally Unroof Namaqualand? Precambrian Research, 150(3-4): 173-182. https://doi.org/10.1016/j.precamres.2006.07.007
      Dokukina, K. A., Khiller, V. V., Khubanov, V. B., et al., 2022. Neoarchean High-Pressure Granulite-Facies Anatexis of Continental Rocks in the Belomorian Eclogite Province, Russia. Precambrian Research, 381: 106843. https://doi.org/10.1016/j.precamres.2022.106843
      Dong, Y. L., Cao, S. Y., Neubauer, F., et al., 2022a. Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179(2): JGS2021. https://doi.org/10.1144/jgs2021-038
      Dong, Y. L., Cao, S. Y., Zhan, L. F., et al., 2022b. Tectono-Magmatism Evolution in the Gaoligong Orogen Belt during Neoproterozoic to Paleozoic: Significance for Assembly of East Gondwana. Precambrian Research, 378: 106776. https://doi.org/10.1016/j.precamres.2022.106776
      Finch, M., Hasalova, P., Weinberg, R. F., et al., 2014. Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone, NW Himalaya: Implications for Channel Flow. Geological Society of America Bulletin, 126(7-8): 892-924. https://doi.org/10.1130/b30817.1
      Ganzhorn, A. C., Labrousse, L., Prouteau, G., et al., 2014. Structural, Petrological and Chemical Analysis of Syn-Kinematic Migmatites: Insights from the Western Gneiss Region, Norway. Journal of Metamorphic Geology, 32(6): 647-673. https://doi.org/10.1111/jmg.12084
      Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39-42. https://doi.org/10.1130/g38336.1
      Gao, L. E., Zeng, L. S., Hu, G. Y., 2010. High Sr/Y Two-Mica Granite from Quedang Area, Southern Tibet, China: Formation Mechanism and Tectonic Implications. Geological Bulletin of China, 29(2): 214-226(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.02.005
      Gao, L. E., Zeng, L. S., Liu, J., et al., 2009. Early Oligocene Na-Rich Peraluminous Leucogranites in the Yardoi Gneiss Dome, Southern Tibet: Formation Mechanism and Tectonic Implications. Acta Petrologica Sinica, 25(9): 2289-2302(in Chinese with English abstract).
      Gao, L. E., Zeng, L. S., Wang, L., et al., 2016. Timing of Different Crustal Partial Melting in the Himalayan Orogenic Belt and Its Tectonic Implications. Acta Geologica Sinica, 90(11): 3039-3059(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.11.006
      Gao, P., Zheng, Y. F., Yakymchuk, C., et al., 2021. The Effects of Source Mixing and Fractional Crystallization on the Composition of Eocene Granites in the Himalayan Orogen. Journal of Petrology, 62(7): EGAB037. https://doi.org/10.1093/petrology/egab037
      Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite+Plagioclase+Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41(5): 651-666. https://doi.org/10.1093/petrology/41.5.651
      Genier, F., Bussy, F., Epard, J. L., et al., 2008. Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone, Aiguilles-Rouges Massif, Western Alps. Lithos, 102(3-4): 575-597. https://doi.org/10.1016/j.lithos.2007.07.024
      Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3-4): 287-301. https://doi.org/10.1016/j.lithos.2010.05.003
      Gu, D. X., Zhang, J. J., Lin, C., et al., 2022. Anatexis and Resultant Magmatism of the Ama Drime Massif: Implications for Himalayan Mid-Miocene Tectonic Regime Transition. Lithos, 424-435: 106773. https://doi.org/10.1016/j.lithos.2022.106773
      Guernina, S., Sawyer, E. W., 2003. Large-Scale Melt-Depletion in Granulite Terranes: An Example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology, 21(2): 181-201. https://doi.org/10.1046/j.1525-1314.2003.00436.x
      Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2): 360-376. https://doi.org/10.1016/j.gr.2011.07.027
      Harley, S. L., 2016. A Matter of Time: The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. https://doi.org/10.2465/jmps.160128
      Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
      Hermann, J., Green, D. H., 2001. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188(12): 149-168. https://doi.org/10.1016/s0012-821x(01)00321-1
      Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247-252. https://doi.org/10.2113/gselements.7.4.247
      Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., et al., 2003. Stress-Driven Melt Segregation in Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 4(5): 8607. https://doi.org/10.1029/2001gc000258
      Hopkinson, T., Harris, N., Roberts, N. M. W., et al., 2020. Evolution of the Melt Source during Protracted Crustal Anatexis: An Example from the Bhutan Himalaya. Geology, 48(1): 87-91. https://doi.org/10.1130/g47078.1
      Hu, Z. P., Zhang, Y. S., Hu, R., et al., 2016. Amphibole-Bearing Migmatite in North Dabie, Eastern China: Water-Fluxed Melting of the Orogenic Crust. Journal of Asian Earth Sciences, 125: 100-116. https://doi.org/10.1016/j.jseaes.2016.05.018
      Inger, S., Harris, N., 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345-368. https://doi.org/10.1093/petrology/34.2.345
      Jamtveit, B., Austrheim, H., Putnis, A., 2016. Disequilibrium Metamorphism of Stressed Lithosphere. Earth-Science Reviews, 154: 1-13. https://doi.org/10.1016/j.earscirev.2015.12.002
      Johnson, T. E., White, R. W., Powell, R., 2008. Partial Melting of Metagreywacke: A Calculated Mineral Equilibria Study. Journal of Metamorphic Geology, 26(8): 837-853. https://doi.org/10.1111/j.1525-1314.2008.00790.x
      Jung, C., Jung, S., Nebel, O., et al., 2009. Fluid-Present Melting of Meta-Igneous Rocks and the Generation of Leucogranites-Constraints from Garnet Major- and Trace Element Data, Lu-Hf Whole Rock-Garnet Ages and Whole Rock Nd-Sr-Hf-O Isotope Data. Lithos, 111(3-4): 220-235. https://doi.org/10.1016/j.lithos.2008.11.008
      Jung, S., Hoernes, S., Mezger, K., 2000. Geochronology and Petrology of Migmatites from the Proterozoic Damara Belt: Importance of Episodic Fluid-Present Disequilibrium Melting and Consequences for Granite Petrology. Lithos, 51(3): 153-179. https://doi.org/10.1016/s0024-4937(99)00062-6
      Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
      Koester, E., Pawley, A. R., Fernandes, L. A. D., et al., 2002. Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43(8): 1595-1616. https://doi.org/10.1093/petrology/43.8.1595
      Labrousse, L., Duretz, T., Gerya, T., 2015. H2O - Fluid-Saturated Melting of Subducted Continental Crust Facilitates Exhumation of Ultrahigh-Pressure Rocks in Continental Subduction Zones. Earth and Planetary Science Letters, 428: 151-161. https://doi.org/10.1016/j.epsl.2015.06.016
      Le Fort, P., 1981. Manaslu Leucogranite: A Collision Signature of the Himalaya: A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth, 86(B11): 10545-10568. https://doi.org/10.1029/jb086ib11p10545
      Lee, J., Whitehouse, M. J., 2007. Onset of Mid-Crustal Extensional Flow in Southern Tibet: Evidence from U/Pb Zircon Ages. Geology, 35(1): 45. https://doi.org/10.1130/g22842a.1
      Lee, Y., Cho, M., 2013. Fluid-Present Disequilibrium Melting in Neoarchean Arc-Related Migmatites of Daeijak Island, Western Gyeonggi Massif, Korea. Lithos, 179: 249-262. https://doi.org/10.1016/j.lithos.2013.08.0
      Lei, K., 2020. Genesis of High Himalayan Pale Granite and Its Dynamic Significance (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      Lei, K., Wang, X. C., Pang, C. J., et al., 2022. Contribution of Free Water in the Anatexis of Continental Crust: Constraints from the High Himalayan Leucogranites. Geochimica, 51(1): 83-97(in Chinese with English abstract).
      Li, H. L., Yang, D. X., Tian, Y., et al., 2023. Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48(4): 1330-1350(in Chinese with English abstract).
      Li, J. Y., Cao, S. Y., Neubauer, F., et al., 2021. Structure and Spatial-Temporal Relationships of Eocene-Oligocene Potassic Magmatism Linked to the Ailao Shan-Red River Shear Zone and Post-Collisional Extension. Lithos, 396: 106203. https://doi.org/10.1016/j.lithos.2021.106203
      Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2016. Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China. Geological Society of America Bulletin, 128(9-10): 1521-1542. https://doi.org/10.1130/b31366.1
      Li, W. Y., Cao, S. Y., Dong, Y. L., et al., 2023. Crustal Anatexis and Initiation of the Continental-Scale Chongshan Strike-Slip Shear Zone on the Southeastern Tibetan Plateau. Tectonics, 42(4): e2023TC007864. https://doi.org/10.1029/2023tc007864
      Li, X. C., Niu, M. L., Yakymchuk, C., et al., 2018. Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction: A Case Study from the North Wulan Gneiss Complex. Gondwana Research, 61: 128-149. https://doi.org/10.1016/j.gr.2018.04.016
      Lin, C., Zhang, J. J., Wang, X. X., et al., 2020. Oligocene Initiation of the South Tibetan Detachment System: Constraints from Syn-Tectonic Leucogranites in the Kampa Dome, Northern Himalaya. Lithos, 354-355: 105332. https://doi.org/10.1016/j.lithos.2019.105332
      Liu, B., Xu, Y., Ma, C. Q., et al., 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311(in Chinese with English abstract).
      Liu, F. L., Robinson, P. T., Gerdes, A., et al., 2010. Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1-4): 247-268. https://doi.org/10.1016/j.lithos.2010.03.002
      Liu, J. L., Tran, M. D., Tang, Y., et al., 2012. Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt, NW Vietnam: Geochronology, Geochemistry and Tectonic Implications. Gondwana Research, 22(2): 628-644. https://doi.org/10.1016/j.gr.2011.10.011
      Liu, X. C., Wu, F. Y., Kohn, M. J., et al., 2022. Plutonic-Subvolcanic Connection of the Himalayan Leucogranites: Insights from the Eocene Lhunze Complex, Southern Tibet. Lithos, 434-435: 106939. https://doi.org/10.1016/j.lithos.2022.106939
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Mallik, A., Dasgupta, R., Tsuno, K., et al., 2016. Effects of Water, Depth and Temperature on Partial Melting of Mantle-Wedge Fluxed by Hydrous Sediment-Melt in Subduction Zones. Geochimica et Cosmochimica Acta, 195: 226-243. https://doi.org/10.1016/j.gca.2016.08.018
      Meng, Z. Y., Gao, X. Y., Chen, R. X., et al., 2021. Fluid-Present and Fluid-Absent Melting of Muscovite in Migmatites in the Himalayan Orogen: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Lithos, 388: 106071. https://doi.org/10.1016/j.lithos.2021.106071
      Patiño Douce, A. E., 1996. Effects of Pressure and H2O Content on the Compositions of Primary Crustal Melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 11-21. https://doi.org/10.1017/s026359330000643x
      Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
      Pourteau, A., Doucet, L. S., Blereau, E. R., et al., 2020. TTG Generation by Fluid-Fluxed Crustal Melting: Direct Evidence from the Proterozoic Georgetown Inlier, NE Australia. Earth and Planetary Science Letters, 550: 116548. https://doi.org/10.1016/j.epsl.2020.116548
      Powell, R., Guiraud, M., White, R. W., 2005. Truth and Beauty in Metamorphic Phase-Equilibria: Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43(1): 21-33. https://doi.org/10.2113/gscanmin.43.1.21
      Prince, C., Harris, N., Vance, D., 2001. Fluid-Enhanced Melting during Prograde Metamorphism. Journal of the Geological Society, 158(2): 233-241. https://doi.org/10.1144/jgs.158.2.233
      Rabillard, A., Jolivet, L., Arbaret, L., et al., 2018. Synextensional Granitoids and Detachment Systems within Cycladic Metamorphic Core Complexes (Aegean Sea, Greece): Toward a Regional Tectonomagmatic Model. Tectonics, 37(8): 2328-2362. https://doi.org/10.1029/2017tc004697
      Regis, D., Warren, C. J., Young, D., et al., 2014. Tectono-Metamorphic Evolution of the Jomolhari Massif: Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan. Lithos, 190-191: 449-466. https://doi.org/10.1016/j.lithos.2014.01.001
      Reichardt, H., Weinberg, R. F., 2012. Hornblende Chemistry in Meta- and Diatexites and Its Retention in the Source of Leucogranites: An Example from the Karakoram Shear Zone, NW India. Journal of Petrology, 53(6): 1287-1318. https://doi.org/10.1093/petrology/egs017
      Reichardt, H., Weinberg, R. F., Andersson, U. B., et al., 2010. Hybridization of Granitic Magmas in the Source: The Origin of the Karakoram Batholith, Ladakh, NW India. Lithos, 116(3-4): 249-272. https://doi.org/10.1016/j.lithos.2009.11.013
      Ricketts, J. W., Karlstrom, K. E., Kelley, S. A., 2015. Embryonic Core Complexes in Narrow Continental Rifts: The Importance of Low-Angle Normal Faults in the Rio Grande Rift of Central New Mexico. Geosphere, 11(2): 425-444. https://doi.org/10.1130/GES01109.1
      Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
      Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x doi: 10.1130/G34584.1
      Rubatto, D., Hermann, J., Berger, A., et al., 2009. Protracted Fluid-Induced Melting during Barrovian Metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158(6): 703-722. https://doi.org/10.1007/s00410-009-0406-5
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. https://doi.org/10.1029/95rg01302
      Sawyer, E. W., 2001. Melt Segregation in the Continental Crust: Distribution and Movement of Melt in Anatectic Rocks. Journal of Metamorphic Geology, 19(3): 291-309. https://doi.org/10.1046/j.0263-4929.2000.00312.x
      Sawyer, E. W., 2008. Atlas of migmatites. The Canadian Mineralogist Special Publication 9. NRC Research Press, Ottawa, Ontario, Canada, 371.
      Sawyer, E. W., 2010. Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid. Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234 https://doi.org/10.2113/gselements.7.4.229
      Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1-2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020
      Shi, Q., Ding, D., Xu, Z. Y., et al., 2021. Metamorphic Evolution of Daqingshan Supracrustal Rocks and Garnet Granite from the North China Craton: Constraints from Phase Equilibria Modelling, Geochemistry, and SHRIMP U-Pb Geochronology. Gondwana Research, 97: 101-120. https://doi.org/10.1016/j.gr.2021.05.014
      Shuai, X., Li, S. M., Zhu, D. C., et al., 2021. Tetrad Effect of Rare Earth Elements Caused by Fractional Crystallization in High-Silica Granites: An Example from Central Tibet. Lithos, 384-385: 105968. https://doi.org/10.1016/j.lithos.2021.105968
      Slagstad, T., Jamieson, R. A., Culshaw, N. G., 2005. Formation, Crystallization, and Migration of Melt in the Mid-Orogenic Crust: Muskoka Domain Migmatites, Grenville Province, Ontario. Journal of Petrology, 46(5): 893-919. https://doi.org/10.1093/petrology/egi004
      Solar, G. S., Pressley, R. A., Brown, M., et al., 1998. Granite Ascent in Convergent Orogenic Belts: Testing a Model. Geology, 26(8): 711-714. https://doi.org/10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2 doi: 10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2
      Stepanov, A. S., Hermann, J., Rubatto, D., et al., 2012. Experimental Study of Monazite/Melt Partitioning with Implications for the REE, Th and U Geochemistry of Crustal Rocks. Chemical Geology, 300-301: 200-220. https://doi.org/10.1016/j.chemgeo.2012.01.007
      Storkey, A. C., Hermann, J., Hand, M., et al., 2005. Using In Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46(6): 1283-1308. https://doi.org/10.1093/petrology/egi017
      Thompson, A. B., 2001. Clockwise P-T Paths for Crustal Melting and H2O Recycling in Granite Source Regions and Migmatite Terrains. Lithos, 56(1): 33-45. https://doi.org/10.1016/s0024-4937(00)00058-x
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Vanderhaeghe, O., 2009. Migmatites, Granites and Orogeny: Flow Modes of Partially-Molten Rocks and Magmas Associated with Melt/Solid Segregation in Orogenic Belts. Tectonophysics, 477(3-4): 119-134. https://doi.org/10.1016/j.tecto.2009.06.021
      Vanderhaeghe, O., Teyssier, C., 2001. Partial Melting and Flow of Orogens. Tectonophysics, 342(3-4): 451-472. https://doi.org/10.1016/s0040-1951(01)00175-5
      Vielzeuf, D., Schmidt, M. W., 2001. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267. https://doi.org/10.1007/s004100100237
      Wallis, S., Tsuboi, M., Suzuki, K., et al., 2005. Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2): 129. https://doi.org/10.1130/g20991.1
      Walte, N. P., Bons, P. D., Passchier, C. W., 2005. Deformation of Melt-Bearing Systems—Insight from In Situ Grain-Scale Analogue Experiments. Journal of Structural Geology, 27(9): 1666-1679. https://doi.org/10.1016/j.jsg.2005.05.006
      Wang, H. B., Cao, S. Y., Li, J. Y., et al., 2022. High-Pressure Granulite-Facies Metamorphism and Anatexis of Deep Continental Crust: New Insights from the Cenozoic Ailao Shan-Red River Shear Zone, Southeast Asia. Gondwana Research, 103: 314-334. https://doi.org/10.1016/j.gr.2021.10.010
      Wang, S. J., Li, S. G., Chen, L. J., et al., 2013. Geochronology and Geochemistry of Leucosomes in the North Dabie Terrane, East China: Implication for Post-UHPM Crustal Melting during Exhumation. Contributions to Mineralogy and Petrology, 165(5): 1009-1029. https://doi.org/10.1007/s00410-012-0845-2
      Wang, Y. Q., Zhai, M. G., He, H. L., et al., 2021. Incipient Charnockite Formation in the Trivandrum Block, Southern India: Evidence from Melt-Related Reaction Textures and Phase Equilibria Modelling. Lithos, 380-381: 105825. https://doi.org/10.1016/j.lithos.2020.105825
      Watkins, J. M., Clemens, J. D., Treloar, P. J., 2007. Archaean TTGS as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 154(1): 91-110. https://doi.org/10.1007/s00410-007-0181-0
      Webb, A. A. G., Guo, H. C., Clift, P. D., et al., 2017. The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 9(4): 637-651. https://doi.org/10.1130/l636.1
      Wei, C. J., Wang, W., 2007. Phase Equilibria of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14(1): 125-134(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60006-2
      Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
      White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621-632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x
      White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
      Whitney, D. L., Teyssier, C., Fayon, A. K., et al., 2003. Tectonic Controls on Metamorphism, Partial Melting, and Intrusion: Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif, Turkey. Tectonophysics, 376(1/2): 37-60. https://doi.org/10.1016/j.tecto.2003.08.009
      Wu, D., Wei, C. J., 2021. Metamorphic Evolution of Two Types of Garnet Amphibolite from the Qingyuan Terrane, North China Craton: Insights from Phase Equilibria Modelling and Zircon Dating. Precambrian Research, 355: 106091. https://doi.org/10.1016/j.precamres.2021.106091
      Xu, J., Xia, X. P., Yin, C. Q., et al., 2022. Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt: Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block, South China. Precambrian Research, 383: 106907. https://doi.org/10.1016/j.precamres.2022.106907
      Yakymchuk, C., 2021. Migmatites. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology. Elsevier, Amsterdam, 492-501. https://doi.org/10.1016/b978-0-08-102908-4.00021-7
      Yang, L., Liu, X. C., Wang, J. M., et al., 2019. Is Himalayan Leucogranite a Product by In Situ Partial Melting of the Greater Himalayan Crystalline?A Comparative Study of Leucosome and Leucogranite from Nyalam, Southern Tibet. Lithos, 342: 542-556. https://doi.org/10.1016/j.lithos.2019.06.007
      Yang, X. Y., Zhang, J. J., Qi, G. W., et al., 2009. Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System. Science in China (Series D), 52(8): 1046-1058. https://doi.org/10.1007/s11430-009-0111-2
      Ye, Z. L., Wan, F., Jiang, N., et al., 2021. Dehydration Melting of Amphibolite at 1.5​GPa and 800-950​℃: Implications for the Mesozoic Potassium-Rich Adakite in the Eastern North China Craton. Geoscience Frontiers, 12(2): 896-906. https://doi.org/10.1016/j.gsf.2020.03.008
      Zeng, L. S., Asimow, P. D., Saleeby, J. B., 2005a. Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source. Geochimica et Cosmochimica Acta, 69(14): 3671-3682. https://doi.org/10.1016/j.gca.2005.02.035
      Zeng, L. S., Saleeby, J. B., Asimow, P., 2005b. Nd Isotope Disequilibrium during Crustal Anatexis: A Record from the Goat Ranch Migmatite Complex, Southern Sierra Nevada Batholith, California. Geology, 33(1): 53. https://doi.org/10.1130/g20831.1
      Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5): 1420-1444(in Chinese with English abstract).
      Zeng, L. S., Gao, L. E., Zhao, L. H., et al., 2021. The Role of Titanite in Shaping the Geochemistry of Amphibolite-Derived Melts. Lithos, 402-403: 106312. https://doi.org/10.1016/j.lithos.2021.106312
      Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications. Science Bulletin, 54(3): 373-381(in Chinese).
      Zhang, Z. M., Ding, H. X., Dong, X., et al., 2020. Partial Melting of Subduction Zones. Acta Petrologica Sinica, 36(9): 2589-2615(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.01
      Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98(in Chinese with English abstract).
      Zheng, Y. F., 2021. Convergent Plate Boundaries and Accretionary Wedges. Encyclopedia of Geology. Elsevier, Amsterdam, 770-787. https://doi.org/10.1016/b978-0-08-102908-4.00042-4
      Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402/403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      高利娥, 曾令森, 胡古月, 2010. 藏南确当地区高Sr/Y比值二云母花岗岩的形成机制及其构造动力学意义. 地质通报, 29(2): 214-226. doi: 10.3969/j.issn.1671-2552.2010.02.005
      高利娥, 曾令森, 刘静, 等, 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909021.htm
      高利娥, 曾令森, 王莉, 等, 2016. 喜马拉雅碰撞造山带不同类型部分熔融作用的时限及其构造动力学意义. 地质学报, 90(11): 3039-3059. doi: 10.3969/j.issn.0001-5717.2016.11.006
      雷凯, 2020. 高喜马拉雅淡色花岗岩成因及其动力学意义(硕士学位论文). 西安: 长安大学.
      雷凯, 王选策, 庞崇进, 等, 2022. 大陆地壳深熔作用中自由水的贡献: 以高喜马拉雅淡色花岗岩为例. 地球化学, 51(1): 83-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202201008.htm
      李洪梁, 杨东旭, 田尤, 等, 2023. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义. 地球科学, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466
      刘彬, 徐雨, 马昌前, 等, 2023. 北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景. 地球科学, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
      魏春景, 王伟, 2007. 高级变质岩中深熔作用的相平衡研究. 地学前缘, 14(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701011.htm
      曾令森, 高利娥, 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705004.htm
      曾令森, 刘静, 高利娥, 等, 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200903019.htm
      张泽明, 丁慧霞, 董昕, 等, 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589-2615. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009002.htm
      张泽明, 康东艳, 丁慧霞, 等, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)

      Article views (1481) PDF downloads(224) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return