Citation: | Yang Zewen, Wu Bingbing, Liu Weiming, Yang Anna, Li Xuemei, Wang Hao, Ruan Hechun, Zhou Yanlian, 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736. doi: 10.3799/dqkx.2024.009 |
Ahmed, J., Peakall, J., Balme, M., et al., 2022. Rapid Megaflood-Triggered Base-Level Rise on Mars. Geology, 51: 28-32. https://doi.org/10.1130/g50277.1
|
Amidon, W. H., Clark, A. C., 2015. Interaction of Outburst Floods with Basaltic Aquifers on the Snake River Plain: Implications for Martian Canyons. Geological Society of America Bulletin, 127(5/6): 688-701. https://doi.org/10.1130/b31141.1
|
Baker, V. R., 1996. Discovering Earth's Future in Its Past: Palaeohydrology and Global Environmental Change. Geological Society, London, Special Publications, 115(1): 73-83. https://doi.org/10.1144/GSL.SP.1996.115.01.07
|
Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172.
|
Baker, V. R., 2002. The Study of Superfloods. Science. 295: 2379-2380. https://doi.org/10.1126/science.1068448
|
Baker, V. R., 2009. Channeled Scabland Morphology. Megaflooding on Earth and Mars, 65-77.
|
Baker, V. R., 2013. Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods. Treatise on Geomorphology, 1: 511-527. https://doi.org/10.1016/B978-0-12-374739-6.00252-9
|
Baker, V. R., 2020. Global Megaflood Paleohydrology. J. HERGET. A. FONTANA. Palaeohydrology: Traces. Tracks and Trails of Extreme Events. Springer International Publishing. Cham, 3-28.
|
Baker, V. R., Benito, G., Brown, A. G., et al., 2021. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275
|
Baker, V. R., Costa, J. E., 2020. Flood Power. Catastrophic Flooding. Routledge, 1-21.
|
Baker, V. R., Milton, D. J., 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus, 23(1): 27-41. https://doi.org/10.1016/0019-1035(74)90101-8
|
Baker, V., 1978a. Large-Scale Erosional and Depositional Features of the Channeled Scabland. National Aeroanutics and Space Administration. City. 81-115.
|
Baker, V., 2002a. High-Energy Megafloods: Planetary Settings and Sedimentary Dynamics. Flood and Megaflood Processes and Deposits, John Wiley & Sons, Hoboken, 1-15.
|
Baker, V., Kale, V., 1998. The Role of Extreme Floods in Shaping Bedrock Channels. Geophysical Monograph, 107: 153-165. https://doi.org/10.1029/GM107P0153
|
Barnes, H. L., 1956. Cavitation as a Geological Agent. American Journal of Science, 254(8): 493-505. https://doi.org/10.2475/ajs.254.8.493
|
Baynes, E. R. C., Attal, M., Dugmore, A. J., et al., 2015b. Catastrophic Impact of Extreme Flood Events on the Morphology and Evolution of the Lower Jökulsá á Fjöllum (Northeast Iceland) during the Holocene. Geomorphology, 250: 422-436. https://doi.org/10.1016/j.geomorph. 2015.05.009 doi: 10.1016/j.geomorph.2015.05.009
|
Baynes, E. R. C., Attal, M., Niedermann, S., et al., 2015a. Erosion during Extreme Flood Events Dominates Holocene Canyon Evolution in Northeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2355-2360. https://doi.org/10.1073/pnas.1415443112
|
Beer, A. R., Lamb, M. P., 2021. Abrasion Regimes in Fluvial Bedrock Incision. Geology. 49: 682-386. https://doi.org/10.1130/g48466.1
|
Benito, G., Thorndycraft, V. R., 2020. Catastrophic Glacial-Lake Outburst Flooding of the Patagonian Ice Sheet. Earth-Science Reviews, 200: 102996. https://doi.org/10.1016/j.earscirev.2019.102996
|
Borgohain, B., Mathew, G., Chauhan, N., et al., 2020. Evidence of Episodically Accelerated Denudation on the Namche Barwa Massif (Eastern Himalayan Syntaxis) by Megafloods. Quaternary Science Reviews, 245: 106410. https://doi.org/10.1016/j.quascirev.2020.106410
|
Bretz, J., 1923a. The Channeled Scablands of the Columbia Plateau. The Journal of Geology. 31: 617-649. https://doi.org/10.1086/623053
|
Burr, D., Wilson, L., Bargery, A., 2009. Floods from Fossae: a Review of Amazonian-Aged Extensional-Tectonic Megaflood Channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 194-208.
|
Carling, P. A., Fan, X. M., 2020. Particle Comminution Defines Megaflood and Superflood Energetics. Earth-Science Reviews, 204: 103087. https://doi.org/10.1016/j.earscirev.2020.103087
|
Carling, P. A., Herget, J., Lanz, J. K., et al., 2009b. Channel-Scale Erosional Bedforms in Bedrock and in Loose Granular Material: Character. Processes and Implications. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 13-32.
|
Carling, P. A., Perillo, M., Best, J., et al., 2017. The Bubble Bursts for Cavitation in Natural Rivers: Laboratory Experiments Reveal Minor Role in Bedrock Erosion. Earth Surface Processes and Landforms, 42(9): 1308-1316. https://doi.org/10.1002/esp.4101
|
Carling, P., Burr, D., Johnsen, T., et al., 2009a. a Review of Open-Channel Megaflood Depositional Landforms on Earth and Mars. Megaflooding on Earth and Mars, 33-49.
|
Carling, P., Hoffmann, M., Silke-Blatter, A., et al., 2002. Drag of Emergent and Submerged Rectangular Obstacles in Turbulent Flow above Bedrock Surface, Lisse, 83-94.
|
Carrivick, J. L., 2007. Hydrodynamics and Geomorphic Work of Jökulhlaups (Glacial Outburst Floods) from Kverkfjöll Volcano, Iceland. Hydrological Processes, 21(6): 725-740. https://doi.org/10.1002/hyp.6248
|
Carrivick, J. L., Manville, V., Graettinger, A., et al., 2010. Coupled Fluid Dynamics-Sediment Transport Modelling of a Crater Lake Break-Out Lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 388(3/4): 399-413. https://doi.org/10.1016/j.jhydrol.2010.05.023
|
Carrivick, J. L., Rushmer, E. L., 2006. Understanding High-Magnitude Outburst Floods. Geology Today, 22(2): 60-65. https://doi.org/10.1111/j.1365-2451.2006.00554.x
|
Chatanantavet, P., Parker, G., 2009. Physically Based Modeling of Bedrock Incision by Abrasion, Plucking, and Macroabrasion. Journal of Geophysical Research: Earth Surface, 114(F4): F04018. https://doi.org/10.1029/2008JF001044
|
Christensen, P. R., Bandfield, J. L., Bell, J. F. 3rd, et al., 2003. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 300(5628): 2056-2061. https://doi.org/10.1126/science.1080885
|
Coleman, N. M., Baker, V. R., 2009. Surface Morphology and Origin of Outflow Channels in the Valles Marineris Region. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. New York, 172-193.
|
Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53-57. https://doi.org/10.1126/science.aat4981
|
Costa, J. E., 1985. Floods from Dam Failures. Open-File Report, 85-560.
|
David, S. R., Larsen, I. J., Lamb, M. P., 2022. Narrower Paleo-Canyons Downsize Megafloods. Geophysical Research Letters, 49(11): e2022GL097861. https://doi.org/10.1029/2022GL097861
|
DeConto, R. M., Nuterman, R., Hvidberg, C. S., et al., 2020. Pliocene-Pleistocene Megafloods as a Mechanism for Greenlandic Megacanyon Formation. Geology, 48: 737-741. https://doi.org/10.1130/g47253.1
|
Denlinger, R. P., O'Connell, D. R. H., 2010. Simulations of Cataclysmic Outburst Floods from Pleistocene Glacial Lake Missoula. Geological Society of America Bulletin, 122(5/6): 678-689. https://doi.org/10.1130/B26454.1
|
Dubinski, I. M., Wohl, E., 2013. Relationships between Block Quarrying, Bed Shear Stress, and Stream Power: a Physical Model of Block Quarrying of a Jointed Bedrock Channel. Geomorphology, 180: 66-81. https://doi.org/10.1016/j.geomorph.2012.09.007
|
Emmer, A., 2017. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028
|
Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., et al., 2009. Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462(7274): 778-781. https://doi.org/10.1038/nature08555
|
George, M., Sitar, N., 2012. Evaluation of Rock Scour Using Block Theory(Dissertation). University of California, California.
|
Goudge, T. A., Morgan, A. M., Stucky de Quay, G., et al., 2021. The Importance of Lake Breach Floods for Valley Incision on Early Mars. Nature, 597(7878): 645-649. https://doi.org/10.1038/s41586-021-03860-1
|
Guan, M. F., Wright, N. G., Sleigh, P. A., et al., 2015. Assessment of Hydro-Morphodynamic Modelling and Geomorphological Impacts of a Sediment-Charged Jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology, 530: 336-349. https://doi.org/10.1016/j.jhydrol. 2015. 09.062 doi: 10.1016/j.jhydrol.2015.09.062
|
Guo, Y. Q., Ge, Y. G., Mao, P. N., et al., 2023. A Comprehensive Analysis of Holocene Extraordinary Flood Events in the Langxian Gorge of the Yarlung Tsangpo River Valley. Science of the Total Environment, 863: 160942. https://doi.org/10.1016/j.scitotenv.2022.160942
|
Guo, Y. Q., Ge, Y. G, Chen, X. Q., et al., 2021. Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180(in Chinese with English abstract).
|
Gupta, S., Collier, J. S., Palmer-Felgate, A., et al., 2007. Catastrophic Flooding Origin of Shelf Valley Systems in the English Channel. Nature, 448(7151): 342-345. https://doi.org/10.1038/nature06018
|
Hancock, G. S., Anderson, R. S., Whipple, K. X., et al., 1998. Beyond Power: Bedrock River Incision Process and form. Geophysical Monograph-American Geophysical Union. 107: 35-60. https://doi.org/10.1029/GM107p0035
|
Hu, K. H., Wei, L., Yang, A., et al., 2022. Broad Valleys and Barrier Dams in Upstream Brahmaputra Efficiently Retain Tibetan-Sourced Sediments: Evidence from Palaeoflood Records. Quaternary Science Reviews. 285: 107538. https://doi.org/10.1016/j.quascirev.2022.107538
|
Hu, K. H., Wu, C. H., Wei, L., et al., 2021. Geomorphic Effects of Recurrent Outburst Superfloods in the Yigong River on the Southeastern Margin of Tibet. Scientific Reports, 11(1): 15577. https://doi.org/10.1038/s41598-021-95194-1
|
Hurst, A. A., Anderson, R. S., Crimaldi, J. P., 2021. Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research: Earth Surface, 126(5): e2020JF005944. https://doi.org/10.1029/2020JF005944
|
Jarrett, R. D., Tomlinson, E. M., 2000. Regional Interdisciplinary Paleoflood Approach to Assess Extreme Flood Potential. Water Resources Research, 36(10): 2957-2984. https://doi.org/10.1029/2000WR900098
|
Jia, K. C., Zhuang, J. Q, Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419 (in Chinese with English abstract).
|
Jiang, X. G., Liu, W. M., Wen, S. S., et al., 2022. Simulation of Ancient High-Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC-RAS Model. Mountain Research, 40(2): 276-288 (in Chinese with English abstract).
|
Kadivar, M., Tormey, D., McGranaghan, G., 2021. A Review on Turbulent Flow over Rough Surfaces: Fundamentals and Theories. International Journal of Thermofluids, 10: 100077. https://doi.org/10.1016/j.ijft.2021.100077
|
Karlstrom, K., Crow, R., Crossey, L., et al., 2008. Model for Tectonically Driven Incision of the Younger than 6 Ma Grand Canyon. Geology. 36: 835-838. https://doi.org/10.1130/g25032a.1
|
Keszthelyi, L., Burr, D., McEwen, A., 2004. Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging. City. 1657
|
King, G. E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637
|
Komar, P. D., 1979. Comparisons of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth. Icarus, 37(1): 156-181. https://doi.org/10.1016/0019-1035(79)90123-4
|
Komatsu, G., Baker, V. R., 1997. Paleohydrology and Flood Geomorphology of Ares Vallis. Journal of Geophysical Research: Planets, 102(E2): 4151-4160. https://doi.org/10.1029/96JE02564
|
Korup, O., 2006. Rock-Slope Failure and the River Long Profile. Geology. 34: 45-48. https://doi.org/10.1130/g21959.1
|
Korup, O., 2012. Earth's Portfolio of Extreme Sediment Transport Events. Earth-Science Reviews, 112(3/4): 115-125. https://doi.org/10.1016/j.earscirev.2012.02.006
|
Korup, O., Montgomery, D. R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature. 455: 786-789. https://doi.org/10.1038/nature07322
|
Lamb, M. P., Finnegan, N. J., Scheingross, J. S., et al., 2015. New Insights into the Mechanics of Fluvial Bedrock Erosion through Flume Experiments and Theory. Geomorphology, 244: 33-55. https://doi.org/10.1016/j.geomorph.2015.03.003
|
Lamb, M. P., Fonstad, M. A., 2010. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event. Nature Geoscience, 3: 477-481. https://doi.org/10.1038/ngeo894
|
Lamb, M. P., MacKey, B. H., Farley, K. A., 2014. Amphitheater-Headed Canyons Formed by Megaflooding at Malad Gorge, Idaho. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 57-62. https://doi.org/10.1073/pnas.1312251111
|
Lamb, M., Dietrich, W., 2009. The Persistence of Waterfalls in Fractured Rock. Geological Society of America Bulletin, 121: 1123-1134. https://doi.org/10.1130/B26482.1
|
Lamb, M., Dietrich, W., Aciego, S., et al., 2008. Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science. 320: 1067-1070. https://doi.org/doi: 10.1126/science.1156630
|
Lang, K. A., Huntington, K. W., Montgomery, D. R., 2013. Erosion of the Tsangpo Gorge by Megafloods, Eastern Himalaya. Geology, 41(9): 1003-1006. doi: 10.1130/G34693.1
|
Lapotre, M. G. A., Lamb, M. P., Williams, R. M. E., 2016. Canyon Formation Constraints on the Discharge of Catastrophic Outburst Floods of Earth and Mars. Journal of Geophysical Research: Planets, 121(7): 1232-1263. https://doi.org/10.1002/2016JE005061
|
Larsen, I. J., Lamb, M. P., 2016. Progressive Incision of the Channeled Scablands by Outburst Floods. Nature, 538(7624): 229-232. https://doi.org/10.1038/nature19817
|
Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and Riverincision. Nature Geoscience, 5: 468-473. https://doi.org/10.1038/ngeo1479
|
Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3: 247-251. https://doi.org/10.1038/ngeo776
|
Lehnigk, K. E., Larsen, I. J., 2022. Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal of Geophysical Research: Earth Surface, 127(1): e2021JF006135. https://doi.org/10.1029/2021JF006135.
|
Li, D. F., Lu, X. X., Walling, D. E., et al., 2022. High Mountain Asia Hydropower Systems Threatened by Climate-Driven Landscape Instability. Nature Geoscience, 15: 520-530. https://doi.org/10.1038/s41561-022-00953-y
|
Li, S. C., 2006. Cavitation Enhancement of Silt Erosion: An Envisaged Micro Model. Wear, 260(9/10): 1145-1150. https://doi.org/10.1016/j.wear.2005.07.002
|
Lin, Y. P., An, C. G., Parker, G., et al., 2022. Morphodynamics of Bedrock-Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research: Earth Surface, 127(9): e2022JF006605. https://doi.org/10.1029/2022JF006605
|
Liu, W., Carling, P. A., Hu, K., et al., 2019. Outburst Floods in China: A Review. Earth-Science Reviews. 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895
|
Liu, Y., Wu, X., Liu, Z. H., et al. 2021. Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436 (in Chinese with English abstract).
|
Lützow, N., Veh, G., 2022. Glacier Lake Outburst Flood Database V3.0. ZENODO. V3.0 edn.
|
Lützow, N., Veh, G., Korup, O., 2023. A Global Database of Historic Glacier Lake Outburst Floods. Earth System Science Data, 15(7), 2983-3000. https://doi.org/10.5194/essd-15-2983-2023
|
Maizels J, 1997. Jökulhlaup Deposits in Proglacial Areas. Quaternary Science Reviews. 16: 793-819. https://doi.org/10.1016/S0277-3791(97)00023-1
|
Miyamoto, H., Komatsu, G., Baker, V. R., et al., 2007. Cataclysmic Scabland Flooding: Insights from a Simple Depth-Averaged Numerical Model. Environmental Modelling & Software, 22(10): 1400-1408. https://doi.org/10.1016/j.envsoft.2006.07.006
|
Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201-207. https://doi.org/10.1016/j.yqres. 2004. 06.008 doi: 10.1016/j.yqres.2004.06.008
|
O'Connor, J. E., Clague, J. J., Walder, J. S., et al., 2013. 9.25 Outburst Floods. S. J. Treatise on Geomorphology. John Wiley & Sons. Ltd. Academic Press, Hoboken, 475-510.
|
O'Connor, J., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood. Geological Society of America, USA.
|
O'Connor, J., Baker, V., Waitt, R., et al., 2020. The Missoula and Bonneville Floods: A Review of Ice-Age Megafloods in the Columbia River Basin. Earth-Science Reviews, 210: 103401. https://doi.org/10.1016/j.earscirev.2020.103401
|
Ouimet, W., Whipple, K., Royden, L., et al., 2007. The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin. 119(11-12), 1462-1476. https://doi.org/10.1130/b26136.1
|
Pasternack, G., Ellis, C., Leier, K. A., et al., 2006. Convergent Hydraulics at Horseshoe Steps in Bedrock Rivers. Geomorphology. 82: 126-145. https://doi.org/10.1016/j.geomorph.2005.08.022
|
Perron, J. T., Venditti, J. G., 2016. Megafloods Downsized. Nature. 538: 174-175. https://doi.org/10.1038/538174a
|
Pico, T., David, S. R., Larsen, I. J., et al., 2022. Glacial Isostatic Adjustment Directed Incision of the Channeled Scabland by Ice Age Megafloods. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2109502119. https://doi.org/10.1073/pnas.2109502119
|
Richardson, K., Carling, P. A., Richardson, K., et al., 2005. A Typology of Sculpted Forms in Open Bedrock Channels. Geological Society of America Special Papers. 392: 1-108. https://doi.org/10.1130/0-8137-2392-2.1
|
Robinson, M., Tanaka, K. L., 1990. Magnitude of a Catastrophic Flood Event at Kasei Valles, Mars. Geology. 18: 902-905. https://doi.org/10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2 doi: 10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2
|
Roep, T. B., Holst, H., Vissers, R. L. M., et al., 1975. Deposits of Southward-Flowing, Pleistocene Rivers in the Channel Region, near Wissant, NW France. Palaeogeography Palaeoclimatology Palaeoecology, 17(4): 289-308. https://doi.org/10.1016/0031-0182(75)90003-6
|
Shen, Y. C., Gong, G. Y., 1986. Introduction to River Geomorphology. Science Press, Beijing, 47-48(in Chinesewith English abstract).
|
Sincavage, R., Liang, M., Pickering, J., et al., 2022. Antecedent Topography and Sediment Dispersal: The Influence of Geologically Instantaneous Events on Basin Fill Patterns. Journal of Geophysical Research: Earth Surface, 127(6): e2021JF006539. https://doi.org/10.1029/2021JF006539
|
Sklar, L., Dietrich, W., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107: 237-260. https://doi.org/10.1029/GM107P0237
|
Smith, A. J., 1985. A Catastrophic Origin for the Palaeovalley System of the Eastern English Channel. Marine Geology, 64(1/2): 65-75. https://doi.org/10.1016/0025-3227(85)90160-4
|
Stefanelli, C. T., Segoni, S., Casagli, N., et al., 2016. Geomorphic Indexing of Landslide Dams Evolution. Engineering Geology. 208: 1-10. https://doi.org/10.1016/j.enggeo.2016.04.024
|
Su, H., Shi, Z. T., Dong, M., et al., 2021. The Geomorphic Process and Sedimentary Characteristics of the "11-3" BaigeDammed Lake Outburst Flood Event in the Upper Reaches of the Jinsha River from Benzilan to Shigu. Earth Science Frontiers, 28(2): 202-210 (in Chinese with English abstract).
|
Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056-1079. https://doi.org/10.1029/2018JF004778
|
Turzewski, M. D., Huntington, K. W., Licht, A., et al., 2020. Provenance and Erosional Impact of Quaternary Megafloods through the Yarlung-Tsangpo Gorge from Zircon U-Pb Geochronology of Flood Deposits, Eastern Himalaya. Earth and Planetary Science Letters, 535: 116113. https://doi.org/10.1016/j.epsl.2020.116113
|
Wang, H., Cui, P., Liu, D. Z., et al., 2019. Evolution of a Landslide-Dammed Lake on the Southeastern Tibetan Plateau and Its Influence on River Longitudinal Profiles. Geomorphology. 343: 15-32. https://doi.org/10.1016/j.geomorph.2019.06.023
|
Wang, P., Scherler, D., Jing, L. Z., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041
|
Wang, H., Cui, P., Carling, P. A., 2021. The Sedimentology of High-Energy Outburst Flood Deposits an Overview. Earth Science Frontiers, 2021, 28(2): 140-167 (in Chinese with English abstract).
|
Wang, H. Y., Wang, P., Hu, G., et al., 2020. Landform, Sedimentary Features and Hydraulic Models of High-Magnitude Outburst Flood. Quaternary Sciences, 40(5): 1334-1349(in Chinese with English abstract).
|
Warner, Sowe, Gupta, et al., 2013. Fill and Spill of Giant Lakes in the Eastern Valles Marineris Region of Mars. Geology, 41(6): 675-678. https://doi.org/10.1130/g34172.1
|
Weckwerth, P., Wysota, W., Piotrowski, J. A., et al., 2019. Late Weichselian Glacier Outburst Floods in North-Eastern Poland: Landform Evidence and Palaeohydraulic Significance. Earth-Science Reviews, 194: 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006
|
Whipple, K., Hancock, G., Anderson, R., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation. Geological Society of America Bulletin. 112: 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2 doi: 10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2
|
Wilkinson, C., Harbor, D., Helgans, E., et al., 2018. Plucking Phenomena in Nonuniform Flow. Geosphere. 14: 2157-2170. https://doi.org/10.1130/ges01623.1
|
Williams, R. M., Phillips, R. J., Malin, M. C., 2000. Flow Rates and Duration within Kasei Valles, Mars: Implications for the Formation of a Martian Ocean. Geophysical Research Letters, 27(7): 1073-1076. https://doi.org/10.1029/1999GL010957
|
Yang, A. N., Wang, H., Liu, W. M., et al., 2022a. Two Megafloods in the Middle Reach of Yarlung Tsangpo River since Last-Glacial Period: Evidence from Giant Bars. Global and Planetary Change, 208: 103726. https://doi.org/10.1016/j.gloplacha.2021.103726
|
Yang, J. S., Wang, Y., Yin J. H., et al., 2022. Progress and Prospects in Recon-Struction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959(in Chinese with English abstract).
|
Yang, W. T., Fang, J., Jing, L. Z., 2021. Landslide-Lake Outburst Floods Accelerate Downstream Slope Slippage. Earth Surface Dynamics. 9: 1251-1262. https://doi.org/10.5194/esurf-9-1251-2021
|
Yang, Z. W., Liu, W. M., Garcia-Castellanos, D., et al., 2022b. Geomorphic Response of Outburst Floods: Insight from Numerical Simulations and Observations: The 2018 Baige Outburst Flood in the Upper Yangtze River. Science of the Total Environment, 851: 158378. https://doi.org/10.1016/j.scitotenv.2022.158378
|
Yu, G. A., Huang, H. Q., Wang, Z. Y., et al., 2011. Research Progress and Application of Step-Pool Systems in Mountain Streams. Progress in Geography, 30(1): 42-48(in Chinese).
|
Zhang, Q. Y., Hu, K. H., Wei, L., et al., 2022a. Rapid Changes in Fluvial Morphology in Response to the High-Energy Yigong Outburst Flood in 2000: Integrating Channel Dynamics and Flood Hydraulics. Journal of Hydrology, 612: 128199. https://doi.org/10.1016/j.jhydrol.2022.128199
|
Zhang, T., Li, D. F., East, A. E., et al., 2022b. Warming-Driven Erosion and Sediment Transport in Cold Regions. Nature Reviews Earth & Environment, 3: 832-851. https://doi.org/10.1038/s43017-022-00362-0
|
Zhao, J. N., Shi, Y. T, Zhang, M. J., et al., 2021. Advancesin Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768(in Chinese with English abstract).
|
Zhou, L. Q., Liu, W. M., Lai, Z. P., et al., 2019. Ceomorphologic Response of River Damming. Quaternary Sciences, 39(2): 366-380 (in Chinese with English abstract).
|
郭永强, 葛永刚, 陈晓清, 等, 2021. 高山峡谷区古洪水事件重建研究进展. 地学前缘, 28: 168-180.
|
贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-水地质灾害链动力学过程重建. 地球科学, 48(9), 3402-3419. doi: 10.3799/dqkx.2021.124
|
蒋先刚, 刘维明, 文宿菘, 等, 2022. 基于HEC-RAS模型的雅江中游古高能洪水的模拟研究. 山地学报, 40: 276-288.
|
刘洋, 吴兴, 刘正豪, 等, 2021. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(4): 416-436.
|
沈玉昌, 龚国元, 1986. 河流地貌学概论. 北京: 科学出版社, 47-48.
|
苏怀, 史正涛, 董铭, 等, 2021. 金沙江"11.3"白格堰塞湖溃决洪水事件在奔子栏-石鼓段的地貌作用和沉积特征. 地学前缘, 28: 202-210.
|
王昊, 崔鹏, P. A. Carling, 2020. 高能洪水沉积研究综述. 地学前缘, 28: 140-167.
|
王慧颖, 王萍, 胡钢, 等, 2020. 溃决大洪水的地貌、沉积特征与水力学重建. 第四纪研究, 40(5): 1334-1349.
|
杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望. 地球科学, 47(11): 3944-3959. doi: 10.3799/dqkx.2022.192
|
余国安, 黄河清, 王兆印, 等, 2011. 山区河流阶梯-深潭研究应用进展. 地理科学进展, 30(1): 42-48.
|
赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95: 2755-2768.
|
周丽琴, 刘维明, 赖忠平, 等, 2019. 河流堰塞的地貌响应. 第四纪研究, 32: 336-380.
|