• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Yang Zewen, Wu Bingbing, Liu Weiming, Yang Anna, Li Xuemei, Wang Hao, Ruan Hechun, Zhou Yanlian, 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
    Citation: Yang Zewen, Wu Bingbing, Liu Weiming, Yang Anna, Li Xuemei, Wang Hao, Ruan Hechun, Zhou Yanlian, 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736. doi: 10.3799/dqkx.2024.009

    Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods

    doi: 10.3799/dqkx.2024.009
    • Received Date: 2024-01-11
    • Publish Date: 2025-02-25
    • As an extreme surface event of high magnitude and low frequency, high-energy outburst flood has strong erosion and remodeling ability, which greatly affects the evolution of surface topography. In recent years, studies on high-energy outburst floods have gradually increased, however, the related erosion mechanisms and geomorphic effects still lack systematic understanding. We sorted out systematically of the relevant progresses of high-energy outburst floods at domestic and abroad, summarized three forms of erosion landforms and their features formed by high-energy outburst floods: large, medium and small, analyzed the erosion patterns and occurrence conditions of four types of high-energy outburst floods, including plucking, cavitation, eddy erosion and abrasion, and further integrated the typical erosion effects of outburst floods. Lastly, the study is combined with domestic and international research interests to reveal the mechanism and driving factors of flood erosion in terms of multi-methods, the "tool effect" and "cover effect" under the erosion and transport, the power and energy relationship between high-energy outburst flood and particle comminution, and the coupling effect of erosion and tectonic uplift.The aim is to provide an in-depth understanding of the occurrence patterns of high-energy outburst floods and their erosion processes, and to deepen the understanding of the links between such catastrophic extreme surface events and the evolution of the landscape.

       

    • loading
    • Ahmed, J., Peakall, J., Balme, M., et al., 2022. Rapid Megaflood-Triggered Base-Level Rise on Mars. Geology, 51: 28-32. https://doi.org/10.1130/g50277.1
      Amidon, W. H., Clark, A. C., 2015. Interaction of Outburst Floods with Basaltic Aquifers on the Snake River Plain: Implications for Martian Canyons. Geological Society of America Bulletin, 127(5/6): 688-701. https://doi.org/10.1130/b31141.1
      Baker, V. R., 1996. Discovering Earth's Future in Its Past: Palaeohydrology and Global Environmental Change. Geological Society, London, Special Publications, 115(1): 73-83. https://doi.org/10.1144/GSL.SP.1996.115.01.07
      Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172.
      Baker, V. R., 2002. The Study of Superfloods. Science. 295: 2379-2380. https://doi.org/10.1126/science.1068448
      Baker, V. R., 2009. Channeled Scabland Morphology. Megaflooding on Earth and Mars, 65-77.
      Baker, V. R., 2013. Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods. Treatise on Geomorphology, 1: 511-527. https://doi.org/10.1016/B978-0-12-374739-6.00252-9
      Baker, V. R., 2020. Global Megaflood Paleohydrology. J. HERGET. A. FONTANA. Palaeohydrology: Traces. Tracks and Trails of Extreme Events. Springer International Publishing. Cham, 3-28.
      Baker, V. R., Benito, G., Brown, A. G., et al., 2021. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275
      Baker, V. R., Costa, J. E., 2020. Flood Power. Catastrophic Flooding. Routledge, 1-21.
      Baker, V. R., Milton, D. J., 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus, 23(1): 27-41. https://doi.org/10.1016/0019-1035(74)90101-8
      Baker, V., 1978a. Large-Scale Erosional and Depositional Features of the Channeled Scabland. National Aeroanutics and Space Administration. City. 81-115.
      Baker, V., 2002a. High-Energy Megafloods: Planetary Settings and Sedimentary Dynamics. Flood and Megaflood Processes and Deposits, John Wiley & Sons, Hoboken, 1-15.
      Baker, V., Kale, V., 1998. The Role of Extreme Floods in Shaping Bedrock Channels. Geophysical Monograph, 107: 153-165. https://doi.org/10.1029/GM107P0153
      Barnes, H. L., 1956. Cavitation as a Geological Agent. American Journal of Science, 254(8): 493-505. https://doi.org/10.2475/ajs.254.8.493
      Baynes, E. R. C., Attal, M., Dugmore, A. J., et al., 2015b. Catastrophic Impact of Extreme Flood Events on the Morphology and Evolution of the Lower Jökulsá á Fjöllum (Northeast Iceland) during the Holocene. Geomorphology, 250: 422-436. https://doi.org/10.1016/j.geomorph. 2015.05.009 doi: 10.1016/j.geomorph.2015.05.009
      Baynes, E. R. C., Attal, M., Niedermann, S., et al., 2015a. Erosion during Extreme Flood Events Dominates Holocene Canyon Evolution in Northeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2355-2360. https://doi.org/10.1073/pnas.1415443112
      Beer, A. R., Lamb, M. P., 2021. Abrasion Regimes in Fluvial Bedrock Incision. Geology. 49: 682-386. https://doi.org/10.1130/g48466.1
      Benito, G., Thorndycraft, V. R., 2020. Catastrophic Glacial-Lake Outburst Flooding of the Patagonian Ice Sheet. Earth-Science Reviews, 200: 102996. https://doi.org/10.1016/j.earscirev.2019.102996
      Borgohain, B., Mathew, G., Chauhan, N., et al., 2020. Evidence of Episodically Accelerated Denudation on the Namche Barwa Massif (Eastern Himalayan Syntaxis) by Megafloods. Quaternary Science Reviews, 245: 106410. https://doi.org/10.1016/j.quascirev.2020.106410
      Bretz, J., 1923a. The Channeled Scablands of the Columbia Plateau. The Journal of Geology. 31: 617-649. https://doi.org/10.1086/623053
      Burr, D., Wilson, L., Bargery, A., 2009. Floods from Fossae: a Review of Amazonian-Aged Extensional-Tectonic Megaflood Channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 194-208.
      Carling, P. A., Fan, X. M., 2020. Particle Comminution Defines Megaflood and Superflood Energetics. Earth-Science Reviews, 204: 103087. https://doi.org/10.1016/j.earscirev.2020.103087
      Carling, P. A., Herget, J., Lanz, J. K., et al., 2009b. Channel-Scale Erosional Bedforms in Bedrock and in Loose Granular Material: Character. Processes and Implications. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 13-32.
      Carling, P. A., Perillo, M., Best, J., et al., 2017. The Bubble Bursts for Cavitation in Natural Rivers: Laboratory Experiments Reveal Minor Role in Bedrock Erosion. Earth Surface Processes and Landforms, 42(9): 1308-1316. https://doi.org/10.1002/esp.4101
      Carling, P., Burr, D., Johnsen, T., et al., 2009a. a Review of Open-Channel Megaflood Depositional Landforms on Earth and Mars. Megaflooding on Earth and Mars, 33-49.
      Carling, P., Hoffmann, M., Silke-Blatter, A., et al., 2002. Drag of Emergent and Submerged Rectangular Obstacles in Turbulent Flow above Bedrock Surface, Lisse, 83-94.
      Carrivick, J. L., 2007. Hydrodynamics and Geomorphic Work of Jökulhlaups (Glacial Outburst Floods) from Kverkfjöll Volcano, Iceland. Hydrological Processes, 21(6): 725-740. https://doi.org/10.1002/hyp.6248
      Carrivick, J. L., Manville, V., Graettinger, A., et al., 2010. Coupled Fluid Dynamics-Sediment Transport Modelling of a Crater Lake Break-Out Lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 388(3/4): 399-413. https://doi.org/10.1016/j.jhydrol.2010.05.023
      Carrivick, J. L., Rushmer, E. L., 2006. Understanding High-Magnitude Outburst Floods. Geology Today, 22(2): 60-65. https://doi.org/10.1111/j.1365-2451.2006.00554.x
      Chatanantavet, P., Parker, G., 2009. Physically Based Modeling of Bedrock Incision by Abrasion, Plucking, and Macroabrasion. Journal of Geophysical Research: Earth Surface, 114(F4): F04018. https://doi.org/10.1029/2008JF001044
      Christensen, P. R., Bandfield, J. L., Bell, J. F. 3rd, et al., 2003. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 300(5628): 2056-2061. https://doi.org/10.1126/science.1080885
      Coleman, N. M., Baker, V. R., 2009. Surface Morphology and Origin of Outflow Channels in the Valles Marineris Region. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. New York, 172-193.
      Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53-57. https://doi.org/10.1126/science.aat4981
      Costa, J. E., 1985. Floods from Dam Failures. Open-File Report, 85-560.
      David, S. R., Larsen, I. J., Lamb, M. P., 2022. Narrower Paleo-Canyons Downsize Megafloods. Geophysical Research Letters, 49(11): e2022GL097861. https://doi.org/10.1029/2022GL097861
      DeConto, R. M., Nuterman, R., Hvidberg, C. S., et al., 2020. Pliocene-Pleistocene Megafloods as a Mechanism for Greenlandic Megacanyon Formation. Geology, 48: 737-741. https://doi.org/10.1130/g47253.1
      Denlinger, R. P., O'Connell, D. R. H., 2010. Simulations of Cataclysmic Outburst Floods from Pleistocene Glacial Lake Missoula. Geological Society of America Bulletin, 122(5/6): 678-689. https://doi.org/10.1130/B26454.1
      Dubinski, I. M., Wohl, E., 2013. Relationships between Block Quarrying, Bed Shear Stress, and Stream Power: a Physical Model of Block Quarrying of a Jointed Bedrock Channel. Geomorphology, 180: 66-81. https://doi.org/10.1016/j.geomorph.2012.09.007
      Emmer, A., 2017. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028
      Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., et al., 2009. Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462(7274): 778-781. https://doi.org/10.1038/nature08555
      George, M., Sitar, N., 2012. Evaluation of Rock Scour Using Block Theory(Dissertation). University of California, California.
      Goudge, T. A., Morgan, A. M., Stucky de Quay, G., et al., 2021. The Importance of Lake Breach Floods for Valley Incision on Early Mars. Nature, 597(7878): 645-649. https://doi.org/10.1038/s41586-021-03860-1
      Guan, M. F., Wright, N. G., Sleigh, P. A., et al., 2015. Assessment of Hydro-Morphodynamic Modelling and Geomorphological Impacts of a Sediment-Charged Jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology, 530: 336-349. https://doi.org/10.1016/j.jhydrol. 2015. 09.062 doi: 10.1016/j.jhydrol.2015.09.062
      Guo, Y. Q., Ge, Y. G., Mao, P. N., et al., 2023. A Comprehensive Analysis of Holocene Extraordinary Flood Events in the Langxian Gorge of the Yarlung Tsangpo River Valley. Science of the Total Environment, 863: 160942. https://doi.org/10.1016/j.scitotenv.2022.160942
      Guo, Y. Q., Ge, Y. G, Chen, X. Q., et al., 2021. Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180(in Chinese with English abstract).
      Gupta, S., Collier, J. S., Palmer-Felgate, A., et al., 2007. Catastrophic Flooding Origin of Shelf Valley Systems in the English Channel. Nature, 448(7151): 342-345. https://doi.org/10.1038/nature06018
      Hancock, G. S., Anderson, R. S., Whipple, K. X., et al., 1998. Beyond Power: Bedrock River Incision Process and form. Geophysical Monograph-American Geophysical Union. 107: 35-60. https://doi.org/10.1029/GM107p0035
      Hu, K. H., Wei, L., Yang, A., et al., 2022. Broad Valleys and Barrier Dams in Upstream Brahmaputra Efficiently Retain Tibetan-Sourced Sediments: Evidence from Palaeoflood Records. Quaternary Science Reviews. 285: 107538. https://doi.org/10.1016/j.quascirev.2022.107538
      Hu, K. H., Wu, C. H., Wei, L., et al., 2021. Geomorphic Effects of Recurrent Outburst Superfloods in the Yigong River on the Southeastern Margin of Tibet. Scientific Reports, 11(1): 15577. https://doi.org/10.1038/s41598-021-95194-1
      Hurst, A. A., Anderson, R. S., Crimaldi, J. P., 2021. Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research: Earth Surface, 126(5): e2020JF005944. https://doi.org/10.1029/2020JF005944
      Jarrett, R. D., Tomlinson, E. M., 2000. Regional Interdisciplinary Paleoflood Approach to Assess Extreme Flood Potential. Water Resources Research, 36(10): 2957-2984. https://doi.org/10.1029/2000WR900098
      Jia, K. C., Zhuang, J. Q, Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419 (in Chinese with English abstract).
      Jiang, X. G., Liu, W. M., Wen, S. S., et al., 2022. Simulation of Ancient High-Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC-RAS Model. Mountain Research, 40(2): 276-288 (in Chinese with English abstract).
      Kadivar, M., Tormey, D., McGranaghan, G., 2021. A Review on Turbulent Flow over Rough Surfaces: Fundamentals and Theories. International Journal of Thermofluids, 10: 100077. https://doi.org/10.1016/j.ijft.2021.100077
      Karlstrom, K., Crow, R., Crossey, L., et al., 2008. Model for Tectonically Driven Incision of the Younger than 6 Ma Grand Canyon. Geology. 36: 835-838. https://doi.org/10.1130/g25032a.1
      Keszthelyi, L., Burr, D., McEwen, A., 2004. Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging. City. 1657
      King, G. E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637
      Komar, P. D., 1979. Comparisons of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth. Icarus, 37(1): 156-181. https://doi.org/10.1016/0019-1035(79)90123-4
      Komatsu, G., Baker, V. R., 1997. Paleohydrology and Flood Geomorphology of Ares Vallis. Journal of Geophysical Research: Planets, 102(E2): 4151-4160. https://doi.org/10.1029/96JE02564
      Korup, O., 2006. Rock-Slope Failure and the River Long Profile. Geology. 34: 45-48. https://doi.org/10.1130/g21959.1
      Korup, O., 2012. Earth's Portfolio of Extreme Sediment Transport Events. Earth-Science Reviews, 112(3/4): 115-125. https://doi.org/10.1016/j.earscirev.2012.02.006
      Korup, O., Montgomery, D. R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature. 455: 786-789. https://doi.org/10.1038/nature07322
      Lamb, M. P., Finnegan, N. J., Scheingross, J. S., et al., 2015. New Insights into the Mechanics of Fluvial Bedrock Erosion through Flume Experiments and Theory. Geomorphology, 244: 33-55. https://doi.org/10.1016/j.geomorph.2015.03.003
      Lamb, M. P., Fonstad, M. A., 2010. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event. Nature Geoscience, 3: 477-481. https://doi.org/10.1038/ngeo894
      Lamb, M. P., MacKey, B. H., Farley, K. A., 2014. Amphitheater-Headed Canyons Formed by Megaflooding at Malad Gorge, Idaho. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 57-62. https://doi.org/10.1073/pnas.1312251111
      Lamb, M., Dietrich, W., 2009. The Persistence of Waterfalls in Fractured Rock. Geological Society of America Bulletin, 121: 1123-1134. https://doi.org/10.1130/B26482.1
      Lamb, M., Dietrich, W., Aciego, S., et al., 2008. Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science. 320: 1067-1070. https://doi.org/doi: 10.1126/science.1156630
      Lang, K. A., Huntington, K. W., Montgomery, D. R., 2013. Erosion of the Tsangpo Gorge by Megafloods, Eastern Himalaya. Geology, 41(9): 1003-1006. doi: 10.1130/G34693.1
      Lapotre, M. G. A., Lamb, M. P., Williams, R. M. E., 2016. Canyon Formation Constraints on the Discharge of Catastrophic Outburst Floods of Earth and Mars. Journal of Geophysical Research: Planets, 121(7): 1232-1263. https://doi.org/10.1002/2016JE005061
      Larsen, I. J., Lamb, M. P., 2016. Progressive Incision of the Channeled Scablands by Outburst Floods. Nature, 538(7624): 229-232. https://doi.org/10.1038/nature19817
      Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and Riverincision. Nature Geoscience, 5: 468-473. https://doi.org/10.1038/ngeo1479
      Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3: 247-251. https://doi.org/10.1038/ngeo776
      Lehnigk, K. E., Larsen, I. J., 2022. Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal of Geophysical Research: Earth Surface, 127(1): e2021JF006135. https://doi.org/10.1029/2021JF006135.
      Li, D. F., Lu, X. X., Walling, D. E., et al., 2022. High Mountain Asia Hydropower Systems Threatened by Climate-Driven Landscape Instability. Nature Geoscience, 15: 520-530. https://doi.org/10.1038/s41561-022-00953-y
      Li, S. C., 2006. Cavitation Enhancement of Silt Erosion: An Envisaged Micro Model. Wear, 260(9/10): 1145-1150. https://doi.org/10.1016/j.wear.2005.07.002
      Lin, Y. P., An, C. G., Parker, G., et al., 2022. Morphodynamics of Bedrock-Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research: Earth Surface, 127(9): e2022JF006605. https://doi.org/10.1029/2022JF006605
      Liu, W., Carling, P. A., Hu, K., et al., 2019. Outburst Floods in China: A Review. Earth-Science Reviews. 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895
      Liu, Y., Wu, X., Liu, Z. H., et al. 2021. Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436 (in Chinese with English abstract).
      Lützow, N., Veh, G., 2022. Glacier Lake Outburst Flood Database V3.0. ZENODO. V3.0 edn.
      Lützow, N., Veh, G., Korup, O., 2023. A Global Database of Historic Glacier Lake Outburst Floods. Earth System Science Data, 15(7), 2983-3000. https://doi.org/10.5194/essd-15-2983-2023
      Maizels J, 1997. Jökulhlaup Deposits in Proglacial Areas. Quaternary Science Reviews. 16: 793-819. https://doi.org/10.1016/S0277-3791(97)00023-1
      Miyamoto, H., Komatsu, G., Baker, V. R., et al., 2007. Cataclysmic Scabland Flooding: Insights from a Simple Depth-Averaged Numerical Model. Environmental Modelling & Software, 22(10): 1400-1408. https://doi.org/10.1016/j.envsoft.2006.07.006
      Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201-207. https://doi.org/10.1016/j.yqres. 2004. 06.008 doi: 10.1016/j.yqres.2004.06.008
      O'Connor, J. E., Clague, J. J., Walder, J. S., et al., 2013. 9.25 Outburst Floods. S. J. Treatise on Geomorphology. John Wiley & Sons. Ltd. Academic Press, Hoboken, 475-510.
      O'Connor, J., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood. Geological Society of America, USA.
      O'Connor, J., Baker, V., Waitt, R., et al., 2020. The Missoula and Bonneville Floods: A Review of Ice-Age Megafloods in the Columbia River Basin. Earth-Science Reviews, 210: 103401. https://doi.org/10.1016/j.earscirev.2020.103401
      Ouimet, W., Whipple, K., Royden, L., et al., 2007. The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin. 119(11-12), 1462-1476. https://doi.org/10.1130/b26136.1
      Pasternack, G., Ellis, C., Leier, K. A., et al., 2006. Convergent Hydraulics at Horseshoe Steps in Bedrock Rivers. Geomorphology. 82: 126-145. https://doi.org/10.1016/j.geomorph.2005.08.022
      Perron, J. T., Venditti, J. G., 2016. Megafloods Downsized. Nature. 538: 174-175. https://doi.org/10.1038/538174a
      Pico, T., David, S. R., Larsen, I. J., et al., 2022. Glacial Isostatic Adjustment Directed Incision of the Channeled Scabland by Ice Age Megafloods. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2109502119. https://doi.org/10.1073/pnas.2109502119
      Richardson, K., Carling, P. A., Richardson, K., et al., 2005. A Typology of Sculpted Forms in Open Bedrock Channels. Geological Society of America Special Papers. 392: 1-108. https://doi.org/10.1130/0-8137-2392-2.1
      Robinson, M., Tanaka, K. L., 1990. Magnitude of a Catastrophic Flood Event at Kasei Valles, Mars. Geology. 18: 902-905. https://doi.org/10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2 doi: 10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2
      Roep, T. B., Holst, H., Vissers, R. L. M., et al., 1975. Deposits of Southward-Flowing, Pleistocene Rivers in the Channel Region, near Wissant, NW France. Palaeogeography Palaeoclimatology Palaeoecology, 17(4): 289-308. https://doi.org/10.1016/0031-0182(75)90003-6
      Shen, Y. C., Gong, G. Y., 1986. Introduction to River Geomorphology. Science Press, Beijing, 47-48(in Chinesewith English abstract).
      Sincavage, R., Liang, M., Pickering, J., et al., 2022. Antecedent Topography and Sediment Dispersal: The Influence of Geologically Instantaneous Events on Basin Fill Patterns. Journal of Geophysical Research: Earth Surface, 127(6): e2021JF006539. https://doi.org/10.1029/2021JF006539
      Sklar, L., Dietrich, W., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107: 237-260. https://doi.org/10.1029/GM107P0237
      Smith, A. J., 1985. A Catastrophic Origin for the Palaeovalley System of the Eastern English Channel. Marine Geology, 64(1/2): 65-75. https://doi.org/10.1016/0025-3227(85)90160-4
      Stefanelli, C. T., Segoni, S., Casagli, N., et al., 2016. Geomorphic Indexing of Landslide Dams Evolution. Engineering Geology. 208: 1-10. https://doi.org/10.1016/j.enggeo.2016.04.024
      Su, H., Shi, Z. T., Dong, M., et al., 2021. The Geomorphic Process and Sedimentary Characteristics of the "11-3" BaigeDammed Lake Outburst Flood Event in the Upper Reaches of the Jinsha River from Benzilan to Shigu. Earth Science Frontiers, 28(2): 202-210 (in Chinese with English abstract).
      Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056-1079. https://doi.org/10.1029/2018JF004778
      Turzewski, M. D., Huntington, K. W., Licht, A., et al., 2020. Provenance and Erosional Impact of Quaternary Megafloods through the Yarlung-Tsangpo Gorge from Zircon U-Pb Geochronology of Flood Deposits, Eastern Himalaya. Earth and Planetary Science Letters, 535: 116113. https://doi.org/10.1016/j.epsl.2020.116113
      Wang, H., Cui, P., Liu, D. Z., et al., 2019. Evolution of a Landslide-Dammed Lake on the Southeastern Tibetan Plateau and Its Influence on River Longitudinal Profiles. Geomorphology. 343: 15-32. https://doi.org/10.1016/j.geomorph.2019.06.023
      Wang, P., Scherler, D., Jing, L. Z., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041
      Wang, H., Cui, P., Carling, P. A., 2021. The Sedimentology of High-Energy Outburst Flood Deposits an Overview. Earth Science Frontiers, 2021, 28(2): 140-167 (in Chinese with English abstract).
      Wang, H. Y., Wang, P., Hu, G., et al., 2020. Landform, Sedimentary Features and Hydraulic Models of High-Magnitude Outburst Flood. Quaternary Sciences, 40(5): 1334-1349(in Chinese with English abstract).
      Warner, Sowe, Gupta, et al., 2013. Fill and Spill of Giant Lakes in the Eastern Valles Marineris Region of Mars. Geology, 41(6): 675-678. https://doi.org/10.1130/g34172.1
      Weckwerth, P., Wysota, W., Piotrowski, J. A., et al., 2019. Late Weichselian Glacier Outburst Floods in North-Eastern Poland: Landform Evidence and Palaeohydraulic Significance. Earth-Science Reviews, 194: 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006
      Whipple, K., Hancock, G., Anderson, R., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation. Geological Society of America Bulletin. 112: 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2 doi: 10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2
      Wilkinson, C., Harbor, D., Helgans, E., et al., 2018. Plucking Phenomena in Nonuniform Flow. Geosphere. 14: 2157-2170. https://doi.org/10.1130/ges01623.1
      Williams, R. M., Phillips, R. J., Malin, M. C., 2000. Flow Rates and Duration within Kasei Valles, Mars: Implications for the Formation of a Martian Ocean. Geophysical Research Letters, 27(7): 1073-1076. https://doi.org/10.1029/1999GL010957
      Yang, A. N., Wang, H., Liu, W. M., et al., 2022a. Two Megafloods in the Middle Reach of Yarlung Tsangpo River since Last-Glacial Period: Evidence from Giant Bars. Global and Planetary Change, 208: 103726. https://doi.org/10.1016/j.gloplacha.2021.103726
      Yang, J. S., Wang, Y., Yin J. H., et al., 2022. Progress and Prospects in Recon-Struction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959(in Chinese with English abstract).
      Yang, W. T., Fang, J., Jing, L. Z., 2021. Landslide-Lake Outburst Floods Accelerate Downstream Slope Slippage. Earth Surface Dynamics. 9: 1251-1262. https://doi.org/10.5194/esurf-9-1251-2021
      Yang, Z. W., Liu, W. M., Garcia-Castellanos, D., et al., 2022b. Geomorphic Response of Outburst Floods: Insight from Numerical Simulations and Observations: The 2018 Baige Outburst Flood in the Upper Yangtze River. Science of the Total Environment, 851: 158378. https://doi.org/10.1016/j.scitotenv.2022.158378
      Yu, G. A., Huang, H. Q., Wang, Z. Y., et al., 2011. Research Progress and Application of Step-Pool Systems in Mountain Streams. Progress in Geography, 30(1): 42-48(in Chinese).
      Zhang, Q. Y., Hu, K. H., Wei, L., et al., 2022a. Rapid Changes in Fluvial Morphology in Response to the High-Energy Yigong Outburst Flood in 2000: Integrating Channel Dynamics and Flood Hydraulics. Journal of Hydrology, 612: 128199. https://doi.org/10.1016/j.jhydrol.2022.128199
      Zhang, T., Li, D. F., East, A. E., et al., 2022b. Warming-Driven Erosion and Sediment Transport in Cold Regions. Nature Reviews Earth & Environment, 3: 832-851. https://doi.org/10.1038/s43017-022-00362-0
      Zhao, J. N., Shi, Y. T, Zhang, M. J., et al., 2021. Advancesin Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768(in Chinese with English abstract).
      Zhou, L. Q., Liu, W. M., Lai, Z. P., et al., 2019. Ceomorphologic Response of River Damming. Quaternary Sciences, 39(2): 366-380 (in Chinese with English abstract).
      郭永强, 葛永刚, 陈晓清, 等, 2021. 高山峡谷区古洪水事件重建研究进展. 地学前缘, 28: 168-180.
      贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-水地质灾害链动力学过程重建. 地球科学, 48(9), 3402-3419. doi: 10.3799/dqkx.2021.124
      蒋先刚, 刘维明, 文宿菘, 等, 2022. 基于HEC-RAS模型的雅江中游古高能洪水的模拟研究. 山地学报, 40: 276-288.
      刘洋, 吴兴, 刘正豪, 等, 2021. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(4): 416-436.
      沈玉昌, 龚国元, 1986. 河流地貌学概论. 北京: 科学出版社, 47-48.
      苏怀, 史正涛, 董铭, 等, 2021. 金沙江"11.3"白格堰塞湖溃决洪水事件在奔子栏-石鼓段的地貌作用和沉积特征. 地学前缘, 28: 202-210.
      王昊, 崔鹏, P. A. Carling, 2020. 高能洪水沉积研究综述. 地学前缘, 28: 140-167.
      王慧颖, 王萍, 胡钢, 等, 2020. 溃决大洪水的地貌、沉积特征与水力学重建. 第四纪研究, 40(5): 1334-1349.
      杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望. 地球科学, 47(11): 3944-3959. doi: 10.3799/dqkx.2022.192
      余国安, 黄河清, 王兆印, 等, 2011. 山区河流阶梯-深潭研究应用进展. 地理科学进展, 30(1): 42-48.
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95: 2755-2768.
      周丽琴, 刘维明, 赖忠平, 等, 2019. 河流堰塞的地貌响应. 第四纪研究, 32: 336-380.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (194) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return