• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Yang Tianyi, Tang Yong, Ren Jianye, Chao Peng, 2025. Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea. Earth Science, 50(1): 195-216. doi: 10.3799/dqkx.2024.012
    Citation: Yang Tianyi, Tang Yong, Ren Jianye, Chao Peng, 2025. Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea. Earth Science, 50(1): 195-216. doi: 10.3799/dqkx.2024.012

    Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea

    doi: 10.3799/dqkx.2024.012
    • Received Date: 2023-11-02
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • The formation and evolution mechanism of the passive rift margin under the marginal sea background is still controversial, especially existing studies on the structural characteristics and formation process of the oceanic and continental transition zone are insufficient. In order to deeply explore the tectonic structure and evolution characteristics of the rift margin and oceanic transition zone of the South China Sea (SCS) under the background of marginal sea, this study presents an investigation of the seismic profiles across the Ⅴ-shaped tip of the Southwest Sub-basin of the SCS, identifying three first order rift margin interfaces including the Moho, Top of basement, and seafloor. The tectonic units of the conjugate margin are subdivided into the necking domain, the hyper-extended domain, and the proto-oceanic domain. The study further refines the interpretation of the stratigraphic sequences and multi-phase fault systems at the conjugate margin as well as identifies the breakup unconformity surface Bi. We divide the syn-rift sequence (between Tg and Bi) into five sequence units (S1-S5), establishing a tectono-stratigraphic framework for the conjugate margin of the SW sub-basin of the SCS. The study indicates that the interface CBi between S3 and S4, as well as the interface POBi between S4 and S5, corresponds to the break-up of continental crust and proto-oceanic crustⅠ, respectively, recording important tectonic events during the rifting. Based on the analysis of fault activity and basin prototyping, we divide the evolution of the conjugate margin into four stages: stretching, necking, hyper-extending, and proto-oceanic crust developing, establishing the rift margin evolution model for the conjugate rift margin of the SW sub-basin of the SCS. This study also identifies a "crocodile-jaw" structure in the crust of the conjugate margin of the Ⅴ-shaped tip at the SW sub-basin of the SCS, recognizing two phases of proto-oceanic crust with total width of 231 km. Based on the investigation of the outer high and syn-breakup sequence (S4 and S5), we propose that the two phases of proto-oceanic crust developing correspond to two episodes of the seafloor spreading at SW sub-basin of the SCS, and that the proto-oceanic crust constitutes the oceanic-continental transition zone between the continental margin and the synchronous oceanic crust. This study reveals the mechanism of the lithospheric thinning and break-up, and the influence of episodic seafloor spreading during the ridge propagation process on the tectonic structure, stratigraphic sequence and magmatic activity. The research will significant deepen our understanding of the rifting process at the SCS, causes of oceanic-continental transition zones, and dynamic mechanisms involved in the formation of passive continental margins at the SCS.

       

    • loading
    • Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Chang, S. P., Pubellier, M., Delescluse, M., et al., 2022. Crustal Architecture and Evolution of the Southwestern South China Sea: Implications to Continental Breakup. Marine and Petroleum Geology, 136: 105450. https://doi.org/10.1016/j.marpetgeo.2021.105450
      Chao, P., Manatschal, G., Chenin, P., et al., 2021. The Tectono-Stratigraphic and Magmatic Evolution of Conjugate Rifted Margins: Insights from the NW South China Sea. Journal of Geodynamics, 148: 101877. https://doi.org/10.1016/j.jog.2021.101877
      Chao, P., Manatschal, G., Zhang, C. M., et al., 2023. The Transition from Continental to Lithospheric Breakup Recorded in Proto-Oceanic Crust: Insights from the NW South China Sea. GSA Bulletin, 135(3-4): 886-902. https://doi.org/10.1130/b36371.1
      Chenin, P., Schmalholz, S. M., Manatschal, G., et al., 2018. Necking of the Lithosphere: A Reappraisal of Basic Concepts with Thermo-Mechanical Numerical Modeling. Journal of Geophysical Research: Solid Earth, 123(6): 5279-5299. https://doi.org/10.1029/2017jb014155
      Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026
      Ding, W. W., Li, J. B., 2016. Conjugate Margin Pattern of the Southwest Sub-Basin, South China Sea: Insights from Deformation Structures in the Continent-Ocean Transition Zone. Geological Journal, 51(S1): 524-534. https://doi.org/10.1002/gj.2733
      Ding, W. W., Li, J. B., Clift, P. D., 2016. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013
      Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      Gao, H. F., Chen, L., 2006. An Analysis of Structural Framework and Formation Mechanism of Zhongjiannan Basin in the West of South China Sea. Oil & Gas Geology, 27(4): 512-516 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.04.011
      Gillard, M., Autin, J., Manatschal, G., et al., 2015. Tectonomagmatic Evolution of the Final Stages of Rifting along the Deep Conjugate Australian-Antarctic Magma-Poor Rifted Margins: Constraints from Seismic Observations. Tectonics, 34(4): 753-783. https://doi.org/10.1002/2015tc003850
      Hall, R., 2000. Cenozoic Plate Tectonic Reconstructions of SE Asia. Geological Society, London, Special Publications, 126(1): 11-23. https://doi.org/10.1144/gsl.sp.1997.126.01.03
      Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658: 14-45. https://doi.org/10.1016/j.tecto.2015.07.003
      Huang, C. J., 2005. Deep Crustal Structure of Baiyun Sag, Northern South China Sea Revealed from Deep Seismic Reflection Profile. Chinese Science Bulletin, 50(11): 1131. https://doi.org/10.1360/04wd0207
      Ji, S. C., Li, L., Xu, Z. Q., 2021. Dislocation Creep and Flow Strength of the Earth's Crust. Acta Geologica Sinica, 95(1): 159-181 (in Chinese with English abstract).
      Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      Lavier, L. L., Manatschal, G., 2006. A Mechanism to Thin the Continental Lithosphere at Magma-Poor Margins. Nature, 440(7082): 324-328. https://doi.org/10.1038/nature04608
      Lee, T. Y., Lawver, L. A., 1994. Cenozoic Plate Reconstruction of the South China Sea Region. Tectonophysics, 235(1-2): 149-180. https://doi.org/10.1016/0040-1951(94)90022-1
      Lei, C., Ren, J. Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region: Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93: 166-181. https://doi.org/10.1016/j.marpetgeo.2018.02.020
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610
      Li, J. B., Ding, W. W., Gao, J. Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.003
      Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(24): 3182-3191. https://doi.org/10.1007/s11434-012-5329-2
      Luo, P., Manatschal, G., Ren, J. Y., et al., 2021. Tectono -Magmatic and Stratigraphic Evolution of Final Rifting and Breakup: Evidence from the Tip of the Southwestern Propagator in the South China Sea. Marine and Petroleum Geology, 129: 105079. https://doi.org/10.1016/j.marpetgeo.2021.105079
      Masini, E., Manatschal, G., Mohn, G., 2013. The Alpine Tethys Rifted Margins: Reconciling Old and New Ideas to Understand the Stratigraphic Architecture of Magma-Poor Rifted Margins. Sedimentology, 60(1): 174-196. https://doi.org/10.1111/sed.12017
      Morley, C. K., 2016. Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas: Review and Implications for Tectonic Development. Journal of Asian Earth Sciences, 120: 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013
      Nirrengarten, M., Mohn, G., Kusznir, N. J., et al., 2020. Extension Modes and Breakup Processes of the Southeast China-Northwest Palawan Conjugate Rifted Margins. Marine and Petroleum Geology, 113: 104123. https://doi.org/10.1016/j.marpetgeo.2019.104123
      Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/s1872-5791(07)60010-4
      Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 29-42. https://doi.org/10.1016/s1876-3804(18)30003-x
      Penrose, C. P., 1972. Penrose Field Conference on Ophiolites. Geotimes, 17: 24-25.
      Peron-Pinvidic, G., Manatschal, G., Osmundsen, P. T., 2013. Structural Comparison of Archetypal Atlantic Rifted Margins: A Review of Observations and Concepts. Marine and Petroleum Geology, 43: 21-47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
      Pubellier, M., Meresse, F., 2013. Phanerozoic Growth of Asia: Geodynamic Processes and Evolution. Journal of Asian Earth Sciences, 72: 118-128. https://doi.org/10.1016/j.jseaes.2012.06.013
      Ren, J. Y., Luo, P., Gao, Y. Y., et al., 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302 (in Chinese with English abstract).
      Sapin, F., Ringenbach, J. C., Clerc, C., 2021. Rifted Margins Classification and Forcing Parameters. Scientific Reports, 11: 1-17. https://doi.org/10.1038/S41598-021-87648-3
      Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      Song, T. R., Li, C. F., Wu, S. G., et al., 2019. Extensional Styles of the Conjugate Rifted Margins of the South China Sea. Journal of Asian Earth Sciences, 177: 117-128. https://doi.org/10.1016/j.jseaes.2019.03.008
      Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. Geophysical Monograph Series. American Geophysical Union, Washington, D. C., 23-56. https://doi.org/10.1029/gm027p0023
      Tugend, J., Gillard, M., Manatschal, G., et al., 2020. Reappraisal of the Magma-Rich versus Magma-Poor Rifted Margin Archetypes. Geological Society, London, Special Publications, 476(1): 23-47. https://doi.org/10.1144/sp476.9
      Tugend, J., Manatschal, G., Kusznir, N. J., et al., 2014. Formation and Deformation of Hyperextended Rift Systems: Insights from Rift Domain Mapping in the Bay of Biscay-Pyrenees. Tectonics, 33(7): 1239-1276. https://doi.org/10.1002/2014TC003529
      Warner, M. R., 1987. Seismic Reflections from the Moho: The Effect of Isostasy. Geophysical Journal International, 88(2): 425-435. https://doi.org/10.1111/j.1365-246x.1987.tb06651.x
      Xie, X. N., Ren, J. Y., Pang, X., et al., 2019. Stratigraphic Architectures and Associated Unconformities of Pearl River Mouth Basin during Rifting and Lithospheric Breakup of the South China Sea. Marine Geophysical Research, 40(2): 129-144. https://doi.org/10.1007/s11001-019-09378-6
      Xie, X. N., Zhao, S., Ren, J. Y., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post-Spreading Period. Earth Science, 47(10): 3524-3542 (in Chinese with English abstract).
      Zhang, J., Wu, Z. C., Shen, Z. Y., et al., 2020. Seismic Evidence for the Crustal Deformation and Kinematic Evolution of the Nansha Block, South China Sea. Journal of Asian Earth Sciences, 203: 104536. https://doi.org.10.1016/j.jseaes.2020.104536
      Zhao, W., Fang, N. Q., Zhan, H. M., et al., 2013. Cenozoic Tectonic Migration in the Northern Sourth China Sea. Marine Geology Frontiers, 29(4): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201304003.htm
      Zhu, R. W., Liu, H. L., Yao, Y. J., et al., 2020. Cenozoic Tectonic Subsidence of the Continental Margins of Southwest Sub-Basin, South China Sea and Its Evolution. Marine Geology & Quaternary Geology, 40(6): 82-92 (in Chinese with English abstract).
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      高红芳, 陈玲, 2006. 南海西部中建南盆地构造格架及形成机制分析. 石油与天然气地质, 27(4): 512-516. doi: 10.3321/j.issn:0253-9985.2006.04.011
      嵇少丞, 黎乐, 许志琴, 2021. 岩石圈的流变性与大陆动力学的科学基础. 地质学报, 95(1): 159-181.
      李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015.
      任建业, 罗盼, 高圆圆, 等, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
      解习农, 赵帅, 任建业, 等, 2022. 南海后扩张期大陆边缘闭合过程及成因机制. 地球科学, 47(10): 3524-3542. doi: 10.3799/dqkx.2022.265
      赵卫, 方念乔, 詹华明, 等, 2013. 南海北部新生代构造迁移特征. 海洋地质前沿, 29(4): 1-6.
      朱荣伟, 刘海龄, 姚永坚, 等, 2020. 南海西南次海盆两侧陆缘新生代构造沉降特征及演化过程. 海洋地质与第四纪地质, 40(6): 82-92.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (264) PDF downloads(43) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return