• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Mei Jingtao, Wan Yongge, 2024. Co-Seismic Rupture Distribution of the Türkiye Double Earthquakes Estimated Based on Priori-Constraints and InSAR Data. Earth Science, 49(8): 2961-2978. doi: 10.3799/dqkx.2024.015
    Citation: Mei Jingtao, Wan Yongge, 2024. Co-Seismic Rupture Distribution of the Türkiye Double Earthquakes Estimated Based on Priori-Constraints and InSAR Data. Earth Science, 49(8): 2961-2978. doi: 10.3799/dqkx.2024.015

    Co-Seismic Rupture Distribution of the Türkiye Double Earthquakes Estimated Based on Priori-Constraints and InSAR Data

    doi: 10.3799/dqkx.2024.015
    • Received Date: 2023-04-11
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Two destructive earthquake with magnitude greater than 7.0 occurred in Türkiye on February 6, 2023. So far, there are still large differences in the seismic rupture models of Türkiye obtained with different observations. Among them, the finite fault model given by United States Geological Survey is the most accurate comprehensive model available at present. Therefore, by adopting the finite fault model from the USGS as the prior model, we invert thecoseismic rupture distribution of twins strong earthquakes inTürkiye, by using the InSAR observation data from Sentinel-1. Our results reveal that: (1) The total seismic moment obtained from the inversion is 1.626 8 × 1021 N∙m, which is equivalent to a large earthquake with a magnitude of Mw8.1; (2) The rupture on the East Anatolian Main fault is mainly concentrated in the range of 0-15 km underground and the rupture on the Çardak-Sürgü Fault zone, but the rupture in the northern branch fault of East Anatolian fault is mostly focused in the depth range of 5-20 km. In the East Anatolian Main fault, the rupture presents two obvious high-value zones. One located at the intersection of the Narlıdağ Fault Zone and the East Anatolian Main Fault, and the other located approximately 65 km southwest of the intersection of the Narlıdağ Fault Zone and the East Anatolian Main Fault. The maximum strike-slip component of the rupture can reach 9.0 m and the maximum dip-slip component is approximately 3.0 m. In the Çardak-Sürgü Fault, the general pattern also shows two high-value zones, one located near the epicenter of the earthquake of magnitude 7.5 in Türkiye and one at the intersection of the southeast-northwest-trending and northeast-southwest-trending faults in the northwest corner of the Çardak-Sürgü Fault. The maximum value of the strike-slip component is approximately 8.1 m and the maximum value of the dip-slip component is approximately 6.1 m. The rupture produced by the twin earthquake in Türkiye is dominated by the strike-slip component and supplemented by the dip-slip component. Furthermore, the twin seismogenic faults, the East Anatolian Main fault and Çardak-Sürgü Fault zone, are both generally sinistral slip in nature. However, it alsoshows there are some thrust slip and normal slip in nature on a local scale.

       

    • loading
    • Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297-303. https://doi.org/10.1007/s12583-023-1316-6
      Erdik, M., Tümsa, M. B. D., et al., 2023. A Preliminary Report on the February 6, 2023 Earthquakes in Türkiye. Temblor, 2: 3-8. https://doi.org/10.32858/temblor.297
      Ergin, M., Aktar, M., Eyidoğan, H., 2004. Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey. Bulletin of the Seismological Society of America, 94(3): 930-939. https://doi.org/ 10.1785/0120020153.
      Guo, Y. L., Li, H. F., Liang, P., et al., 2023. Preliminary Report of Coseismic Surface Rupture (part) of Türkiye's MW7.8 Earthquake by Remote Sensing Interpretation. Earthquake Research Advances, 4(1): 100219. https://doi.org/10.1016/j.eqrea.2023.100219
      Güvercin, S. E., Karabulut, H., Konca, A. Ö., et al., 2022. Active Seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1): 50-69. https://doi.org/10.1093/gji/ggac045
      Jackson, D. D., Matsu'ura, M., 1985. A Bayesian Approach to Nonlinear Inversion. Journal of Geophysical Research: Solid Earth, 90(B1): 581-591. https://doi.org/10.1029/jb090ib01p00581
      Jia, Z., Jin, Z. Y., Marchandon, M., et al., 2023. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661): 985-990. https://doi.org/ 10.1126/science.adi0685
      Kikuchi, M., Kanamori, H., 1991. Inversion of Complex Body Waves-Ⅲ, Bulletin of the Seismological Society of America, 81: 2335-2350. https://doi.org/10.1785/BSSA0810062335
      Li, Y. H., Cui. D. X., Hao, M., 2015. GPS-Constrained Inversion of Slip Rate on Major Active Faults in the Northeastern Margin of Tibet Plateau. Earth Science, 40(10): 1767-1780(in Chinese with English abstract).
      Melgar, D., Taymaz, T., Ganas, A., et al., 2023. Sub- And Super-Shear Ruptures during the 2023 Mw 7.8 and Mw 7.6 Earthquake Doublet in SE Türkiye. Seismica, 2(3): 1-15. https://doi.org/10.26443/seismica.v2i3.387
      Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82(2): 1018-1040. https://doi.org/10.1785/bssa0820021018
      Okuwaki, R., Yagi, Y., Taymaz, T., et al., 2023. Multi‐Scale Rupture Growth with Alternating Directions in a Complex Fault Network during the 2023 South‐Eastern Türkiye and Syria Earthquake Doublet. Geophysical Research Letters, 50(12): 1-15. https://doi.org/10.1029/2023gl103480
      Reitman, N. G., Richard, W. B., William, D. B., et al., 2023. Preliminary Fault Rupture Mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. USGS: Reston, VA, USA. https://doi.org/10.5066/P985I7U2
      Shen, Z. K., Jackson, D. D., Feng, Y. J., et al., 1994. Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992. Bulletin of the Seismological Society of America, 84(3): 780-791. https://doi.org/10.1785/bssa0840030780
      Wan, Y. G., 2022. Method of Active Fault Geometry Determination by Clustering Nodal Planes of Focal Mechanisms Occurred on the Fault Belt and Its Application to the 2021 Yangbi Earthquake Sequence. Chinese Journal of Geophysics, 65(2): 637-648(in Chinese with English abstract).
      Wan, Y. G., Shen, Z. K., Bürgmann, R., et al., 2017. Fault Geometry and Slip Distribution of the 2008 Mw 7.9 Wenchuan, China Earthquake, Inferred from GPS and InSAR Measurements. Geophysical Journal International, 208(2): 748-766. https://doi.org/10.1093/gji/ggw421
      Wan, Y. G., Shen, Z. K., Lan, C. X., 2005. Study on Displacement Field Generated by Aftershocks in Landers Earthquake Fault Zone and Its Adjacent Areas. Acta Seismologica Sinica, 27(2): 139-146(in Chinese with English abstract).
      Wan, Y. G., Shen, Z. K., Wang, M., et al., 2008. Coseismic Slip Distribution of the 2001 Kunlun Mountain Pass West Earthquake Constrained using GPS and InSAR Data. Chinese Journal of Geophysics, 51(4): 753-764(in Chinese with English abstract). doi: 10.1002/cjg2.1268
      Wan, Y. G., Wan, Y. K., Jin, Z. T., et al., 2017. Rupture Distribution of the 1976 Tangshan Earthquake Sequence Inverted from Geodetic Data. Chinese Journal of Geophys, 60(9): 3378-3395(in Chinese with English abstract).
      Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earthquakes? Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Xu, J., Liu, C. L., Xiong, X., 2020. Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake. Seismological Research Letters, 91(6): 3120-3128. https://doi.org/10.1785/0220200124
      李煜航, 崔笃信, 郝明, 2015. 利用GPS数据反演青藏高原东北缘主要活动断裂滑动速率. 地球科学, 40(10): 1767-1780. doi: 10.3799/dqkx.2015.158
      万永革, 2022. 断裂带震源机制节面聚类确定断裂带产状方法及在2021年漾濞地震序列中的应用. 地球物理学报, 65(2): 637-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202202015.htm
      万永革, 沈正康, 王敏, 等, 2008. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布. 地球物理学报, 51(4): 1074-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804018.htm
      万永革, 万永魁, 靳志同, 等, 2017. 用形变资料反演1976年唐山地震序列的破裂分布. 地球物理学报, 60(9): 3378-3395. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201709009.htm
      万永革, 沈正康, 兰从欣, 2005. 兰德斯地震断层面及其附近余震产生的位移场研究. 地震学报, 27(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200502002.htm
      王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定? 地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (288) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return