• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Huang Qian, Wu Song, Liu Xiaofeng, Shen Yahui, Danzeng Awang, Ci Qiong, Chen Lie, Wei Shoucai, 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
    Citation: Huang Qian, Wu Song, Liu Xiaofeng, Shen Yahui, Danzeng Awang, Ci Qiong, Chen Lie, Wei Shoucai, 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638. doi: 10.3799/dqkx.2024.017

    The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology

    doi: 10.3799/dqkx.2024.017
    • Received Date: 2024-01-22
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • In-situ U-Pb dating of garnet is a newly developed isotope dating method for low-U minerals recently, which has been widely used in skarn deposits study. In this paper, the LA-ICP-MS U-Pb age and trace element compositions of garnet are reported for the first time in the Tangge skarn-type copper-lead-zinc deposit in Xizang. Combining with the results of zircon U-Pb dating of quartz porphyry, this study investigates the timing of magmatism and related mineralization and the ore-forming processes of the Tangge deposit. The garnet U-Pb age is 65.5±3.9 Ma, and the zircon U-Pb age of quartz porphyry is 68.1±0.9 Ma. These ages indicate both the granitic rocks and mineralization of the Tangge deposit were formed at Late Cretaceous-Palaeocene. The rare earth distribution patterns of garnet show an enrichment in light rare earth elements and depleted in heavy rare earth elements in the Tangge deposit with a LREE/HREE ratio is 0.01 to 12.68.Thegarnet can be further divided into two stages (Grt Ⅰ and Grt Ⅱ). The different Eu anomalies and average U contents in Grt Ⅰ and Grt Ⅱ indicate that the oxygen fugacity increases at first and then decreases. The average contents of Hf and Ta in the core of the first-stage garnet(GrtI-1) (8.84×10-6 and 0.52×10-6) are higher than those in the rim (GrtI-2:1.60×10-6 and 0.23×10-6), and in the second-stage garnet (GrtII: 1.47×10-6 and 0.37×10-6), indicating that the metallogenic environment changes from a relatively closed system to an open and oscillating one. The ore-forming age of the skarn-type deposits in the syn-collisional Gangdese metallogenic belt is gradually getting older from east to west, which reveals the diachronous volcanic activity and reflects the characteristics of uneven collision between the Indian continent and the Asia continent. The Tangge deposit is a newly discovered syn-collisional skarn-type copper polymetallic deposit in the South Gangdese, which will provide a new direction for mineral prospecting in the Zhunuo ore concentration area and its surrounding areas, and even in the entire South Gangdese.

       

    • loading
    • Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U-Pb Dating by TIMS and LA-ICP-MS. Geostandards and Geoanalytical Research, 47(2): 297-310. https://doi.org/10.1111/ggr.12493
      Chang, Z., Shu, Q., Meinert, L. D., 2019. Skarn Deposits of China. Society of Economic Geologists, Special Publication, 22: 189-234.
      Chen, H., Zheng, Y. Y., Yu, Z. Z., et al., 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218(in Chinese with English abstract).
      Chung, S., Liu, D. Y., Ji, J., et al., 1998. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. https://doi.org/10.1130/G19796.1
      Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410-017-1389-2
      Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA-ICP-MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273
      Fei, G. C., Wen, C. Q., Zhou, X., et al., 2010. Laser Microprobe 40Ar-39Ar Geochronology of Quartz from Dongzhongla Lead-Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43(in Chinese with English abstract).
      Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2014.06.008
      Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
      Gao, X., Deng, J., Meng, J. Y., et al., 2014. Characteristics of Garnet in the Hongniu Skarn Copper Deposit Western Yunnan. Acta Petrologica Sinica, 30(9): 2695-2708(in Chinese with English abstract).
      Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033
      Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1/2/3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
      Hou, Z. Q., Gao, Y. F., Meng, X. S., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248(in Chinese with English abstract).
      Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen: New Advances. Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
      Jamtveit, B., Ragnarsdóttir, K., Wood, B., 1995. On the Origin of Zoned Grossular-Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7(6): 1399-1410. https://doi.org/10.1127/ejm/7/6/1399
      Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Prospecting Potential in the Linzizong Group Volcanic Rock Area, Western Gangdise(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Jiang, X. J., Zheng, Y. Y., Gao, S. B., et al., 2021. In-Situ U-Pb Geochronology of Ti-Bearing Andradite as a Practical Tool for Linking Skarn Alteration and Pb-Zn Mineralization: a Case Study of the Mengya'a Deposit, Tibet. Ore Geology Reviews, 139: 104565. https://doi.org/10.1016/j.oregeorev.2021.104565
      Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624-633. https://doi.org/10.1016/j.jseaes.2008.09.004
      Li, G. M., Liu, B., Qu, W. J., et al., 2005. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract).
      Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
      Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006
      Li, Y. Y., Xie, Y. L., Chen, W., et al., 2017. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract).
      Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. https://doi.org/10.1016/j.oregeorev.2022.104823
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(27): 2948-2956
      Massimo, C., Urs, S., Richard, S., et al., 2013. How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems? An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565
      Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100th Anniversarry Volume, 299-336.
      Mo, X. X., Zhao, Z. D., Depaolo, D., et al., 2006. Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization: Evidence from Sr-Nd Isotopes. Acta Petrologica Sinica, 22(4): 795-803(in Chinese with English abstract).
      Ouyang, Y. P., Zhou, X. R., Yao, Z. Y., et al., 2020. Study on the Two-Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu)Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231(in Chinese with English abstract).
      Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract).
      Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W-Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011
      Qin, K. Z., Xia, D. X., Li, G. M., et al., 2014. The Qulong Porphyry-Skarn Copper-Molybdenum Deposit in Tibet. Science Press, Beijing(in Chinese with English abstract).
      Shu, Q. H., Deng, J., Chang, Z. S., et al., 2024. Skarn Zonation of the Giant Jiama Cu-Mo-Au Deposit in Southern Tibet, SW China. Economic Geology, 119 (1): 1-22. https://doi.org/10.5382/econgeo.5038
      Shu, Q., Al, E., 2015. Fluid Compositions Reveal Fluid Nature, Metal Deposition Mechanisms, and Mineralization Potential: an Example at the Haobugao Zn-Pb Skarn, China. Geology, 49: 473-477. https://doi.org/10.1130/G48348.1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126-020-00970-0
      Tang, J. X., Chen, Y. C., Duo, J., et al., 2009. Main Deposit Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern Segment of the Gangdise Metallogenic Belt, Tibet. Acta Mineralogica Sinica, 29(S1): 476-478(in Chinese with English abstract).
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, L. Q., Tang, J. X., Deng, J., et al., 2015. The Longmala and Mengya'a Skarn Pb-Zn Deposits, Gangdese Region, Tibet: Evidence from U-Pb and Re-Os Geochronology for Formation during Early India-Asia Collision. International Geology Review, 57(14): 1825-1842. https://doi.org/10.1080/00206814.2015.1029540
      Wang, Y. F., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56(2): 587-596. https://doi.org/10.1016/0016-7037(92)90083-U
      Wang, Y. C., Duan, D. F., 2021. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458(in Chinese with English abstract).
      Wen, G., Li, J. W., Hofstra, A. H., et al., 2020. Textures and Compositions of Clinopyroxene in an Fe Skarn with Implications for Ore-Fluid Evolution and Mineral-Fluid REE Partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. https://doi.org/10.1016/j.gca.2020.08.020
      Wu, S., 2016. The Zhunuo Super-Large Porphyry Copper Deposit in the Gangdise Region, Tibet: Magmatism and Mineralization(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xie, F. W., Lang, X. H., Tang, J. X., et al., 2022. Metallogenic regularity of Gangdese Metallogenic Belt, Tibet. Mineral Deposits, 41(5): 952-974(in Chinese with English abstract).
      Xie, G. Q., Chen, X. L., Ma, L. J., et al., 2021. Chengba Copper Polymetallic Skarn Deposit in Linzhou County, Gangdese Metallogenic Belt: Implications for Mineral Exploration of Regional Paleocene Cu Deposits in Southern Tibet. Mineral Deposits, 40(3): 625-630(in Chinese with English abstract).
      Xu, J., Zheng, Y. Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn-Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract).
      Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27(1): 28-36(in Chinese with English abstract).
      Yin, A., Harrison, T., 2006. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211.
      Zhang, A. P., Zheng, Y. C., Xu, B., et al., 2019. Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetallic Deposit, Evidence from Geochronology, Petrogenesis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106: 318-339. https://doi.org/10.1016/j.oregeorev.2019.02.004
      Zhao, Y. M., Lin, W. W., Bi, C. S., 2012. Skarn Ore Deposits in China. Geological Publishing House, Beijing, 1-115(in Chinese with English abstract).
      Zhao, Y. Y., Liu, X. F., Yang, C. S., et al., 2022. Recongnition of A-Type Granite and Its Implication for Magmatism and Mineralization in Tangge Skarn-Type Cu-Polymetallic Deposit, Tibet. Geology in China, 49(2): 496-517(in Chinese with English abstract).
      Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7
      Zheng, Y. Y., Duoji, Wang, R. J., et al., 2007. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334(in Chinese with English abstract).
      Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract).
      Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
      Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. The 40Ar/39Ar Chronological Framework of the Linzizong Volcanic Rocks in the Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103(in Chinese).
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002.
      Zhu, D. C,. Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Sci Rep. 2015 Sep 23;5: 14289. https://doi.org/10.1038/srep14289.
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20(in Chinese with English abstract).
      陈浩, 郑有业, 余泽章, 等, 2022. 西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义. 地球科学, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
      费光春, 温春齐, 周雄, 等, 2010. 西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义. 矿物岩石, 30(3): 38-43.
      付文春, 康志强, 潘会彬, 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义. 地质通报, 33(6): 850-859.
      高雪, 邓军, 孟健寅, 等, 2014. 滇西红牛矽卡岩型铜矿床石榴子石特征. 岩石学报, 30(9): 2695-2708.
      侯增谦, 王二七, 2008. 印度-亚洲大陆碰撞成矿作用主要研究进展. 地球学报, 29(3): 275-292.
      侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
      姜军胜, 2018. 冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士毕业论文). 武汉: 中国地质大学.
      李光明, 刘波, 屈文俊, 等, 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: 来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490.
      李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
      莫宣学, 赵志丹, Don J DEPAOLO, 等, 2006. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据. 岩石学报, 22(4): 795-803.
      欧阳永棚, 周显荣, 尧在雨, 等, 2020. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示. 地学前缘, 27(4): 219-231.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
      秦克章, 夏代祥, 李光明, 等, 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京: 科学出版社.
      唐菊兴, 陈毓川, 多吉, 等, 2009. 西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价. 矿物学报, 29(S1): 476-478.
      王一川, 段登飞, 2021. 矽卡岩中石榴子石的稀土配分特征及其成因指示. 北京大学学报(自然科学版), 57(3): 446-458.
      吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士毕业论文). 北京: 中国地质大学(北京).
      谢富伟, 郎兴海, 唐菊兴, 等, 2022. 西藏冈底斯成矿带成矿规律. 矿床地质, 41(5): 952-974.
      谢桂青, 陈小龙, 马龙敬, 等, 2021. 冈底斯成矿带林周县程巴矽卡岩铜多金属矿床特征: 对藏南区域古新世铜矿床的找矿启示. 矿床地质, 40(3): 625-630.
      徐净, 郑有业, 孙祥, 等, 2014. 西藏知不拉矽卡岩型铜矿床矿物学特征及地质意义. 地球科学, 39(6): 654-670, 768. doi: 10.3799/dqkx.2014.062
      杨志明, 侯增谦, 夏代详, 等, 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36.
      赵亚云, 刘晓峰, 杨春四, 等, 2022. 西藏唐格矽卡岩型铜多金属矿床A型花岗岩的识别及其对成岩成矿的指示. 中国地质, 49(2): 496-517.
      郑有业, 多吉, 王瑞江, 等, 2007. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334.
      郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239.
      郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
      周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103.
      朱弟成, 莫宣学, 赵志丹, 等, 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (281) PDF downloads(37) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return