Citation: | Huang Qian, Wu Song, Liu Xiaofeng, Shen Yahui, Danzeng Awang, Ci Qiong, Chen Lie, Wei Shoucai, 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638. doi: 10.3799/dqkx.2024.017 |
Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U-Pb Dating by TIMS and LA-ICP-MS. Geostandards and Geoanalytical Research, 47(2): 297-310. https://doi.org/10.1111/ggr.12493
|
Chang, Z., Shu, Q., Meinert, L. D., 2019. Skarn Deposits of China. Society of Economic Geologists, Special Publication, 22: 189-234.
|
Chen, H., Zheng, Y. Y., Yu, Z. Z., et al., 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218(in Chinese with English abstract).
|
Chung, S., Liu, D. Y., Ji, J., et al., 1998. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. https://doi.org/10.1130/G19796.1
|
Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410-017-1389-2
|
Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA-ICP-MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273
|
Fei, G. C., Wen, C. Q., Zhou, X., et al., 2010. Laser Microprobe 40Ar-39Ar Geochronology of Quartz from Dongzhongla Lead-Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43(in Chinese with English abstract).
|
Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2014.06.008
|
Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
|
Gao, X., Deng, J., Meng, J. Y., et al., 2014. Characteristics of Garnet in the Hongniu Skarn Copper Deposit Western Yunnan. Acta Petrologica Sinica, 30(9): 2695-2708(in Chinese with English abstract).
|
Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033
|
Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1/2/3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
|
Hou, Z. Q., Gao, Y. F., Meng, X. S., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248(in Chinese with English abstract).
|
Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen: New Advances. Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
|
Jamtveit, B., Ragnarsdóttir, K., Wood, B., 1995. On the Origin of Zoned Grossular-Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7(6): 1399-1410. https://doi.org/10.1127/ejm/7/6/1399
|
Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Prospecting Potential in the Linzizong Group Volcanic Rock Area, Western Gangdise(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Jiang, X. J., Zheng, Y. Y., Gao, S. B., et al., 2021. In-Situ U-Pb Geochronology of Ti-Bearing Andradite as a Practical Tool for Linking Skarn Alteration and Pb-Zn Mineralization: a Case Study of the Mengya'a Deposit, Tibet. Ore Geology Reviews, 139: 104565. https://doi.org/10.1016/j.oregeorev.2021.104565
|
Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624-633. https://doi.org/10.1016/j.jseaes.2008.09.004
|
Li, G. M., Liu, B., Qu, W. J., et al., 2005. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract).
|
Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
|
Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006
|
Li, Y. Y., Xie, Y. L., Chen, W., et al., 2017. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract).
|
Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. https://doi.org/10.1016/j.oregeorev.2022.104823
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(27): 2948-2956
|
Massimo, C., Urs, S., Richard, S., et al., 2013. How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems? An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565
|
Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100th Anniversarry Volume, 299-336.
|
Mo, X. X., Zhao, Z. D., Depaolo, D., et al., 2006. Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization: Evidence from Sr-Nd Isotopes. Acta Petrologica Sinica, 22(4): 795-803(in Chinese with English abstract).
|
Ouyang, Y. P., Zhou, X. R., Yao, Z. Y., et al., 2020. Study on the Two-Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu)Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231(in Chinese with English abstract).
|
Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract).
|
Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W-Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011
|
Qin, K. Z., Xia, D. X., Li, G. M., et al., 2014. The Qulong Porphyry-Skarn Copper-Molybdenum Deposit in Tibet. Science Press, Beijing(in Chinese with English abstract).
|
Shu, Q. H., Deng, J., Chang, Z. S., et al., 2024. Skarn Zonation of the Giant Jiama Cu-Mo-Au Deposit in Southern Tibet, SW China. Economic Geology, 119 (1): 1-22. https://doi.org/10.5382/econgeo.5038
|
Shu, Q., Al, E., 2015. Fluid Compositions Reveal Fluid Nature, Metal Deposition Mechanisms, and Mineralization Potential: an Example at the Haobugao Zn-Pb Skarn, China. Geology, 49: 473-477. https://doi.org/10.1130/G48348.1
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126-020-00970-0
|
Tang, J. X., Chen, Y. C., Duo, J., et al., 2009. Main Deposit Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern Segment of the Gangdise Metallogenic Belt, Tibet. Acta Mineralogica Sinica, 29(S1): 476-478(in Chinese with English abstract).
|
Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
|
Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
|
Wang, L. Q., Tang, J. X., Deng, J., et al., 2015. The Longmala and Mengya'a Skarn Pb-Zn Deposits, Gangdese Region, Tibet: Evidence from U-Pb and Re-Os Geochronology for Formation during Early India-Asia Collision. International Geology Review, 57(14): 1825-1842. https://doi.org/10.1080/00206814.2015.1029540
|
Wang, Y. F., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56(2): 587-596. https://doi.org/10.1016/0016-7037(92)90083-U
|
Wang, Y. C., Duan, D. F., 2021. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458(in Chinese with English abstract).
|
Wen, G., Li, J. W., Hofstra, A. H., et al., 2020. Textures and Compositions of Clinopyroxene in an Fe Skarn with Implications for Ore-Fluid Evolution and Mineral-Fluid REE Partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. https://doi.org/10.1016/j.gca.2020.08.020
|
Wu, S., 2016. The Zhunuo Super-Large Porphyry Copper Deposit in the Gangdise Region, Tibet: Magmatism and Mineralization(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Xie, F. W., Lang, X. H., Tang, J. X., et al., 2022. Metallogenic regularity of Gangdese Metallogenic Belt, Tibet. Mineral Deposits, 41(5): 952-974(in Chinese with English abstract).
|
Xie, G. Q., Chen, X. L., Ma, L. J., et al., 2021. Chengba Copper Polymetallic Skarn Deposit in Linzhou County, Gangdese Metallogenic Belt: Implications for Mineral Exploration of Regional Paleocene Cu Deposits in Southern Tibet. Mineral Deposits, 40(3): 625-630(in Chinese with English abstract).
|
Xu, J., Zheng, Y. Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn-Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract).
|
Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27(1): 28-36(in Chinese with English abstract).
|
Yin, A., Harrison, T., 2006. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211.
|
Zhang, A. P., Zheng, Y. C., Xu, B., et al., 2019. Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetallic Deposit, Evidence from Geochronology, Petrogenesis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106: 318-339. https://doi.org/10.1016/j.oregeorev.2019.02.004
|
Zhao, Y. M., Lin, W. W., Bi, C. S., 2012. Skarn Ore Deposits in China. Geological Publishing House, Beijing, 1-115(in Chinese with English abstract).
|
Zhao, Y. Y., Liu, X. F., Yang, C. S., et al., 2022. Recongnition of A-Type Granite and Its Implication for Magmatism and Mineralization in Tangge Skarn-Type Cu-Polymetallic Deposit, Tibet. Geology in China, 49(2): 496-517(in Chinese with English abstract).
|
Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7
|
Zheng, Y. Y., Duoji, Wang, R. J., et al., 2007. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334(in Chinese with English abstract).
|
Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract).
|
Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
|
Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. The 40Ar/39Ar Chronological Framework of the Linzizong Volcanic Rocks in the Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103(in Chinese).
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002.
|
Zhu, D. C,. Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Sci Rep. 2015 Sep 23;5: 14289.
|
Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20(in Chinese with English abstract).
|
陈浩, 郑有业, 余泽章, 等, 2022. 西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义. 地球科学, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
|
费光春, 温春齐, 周雄, 等, 2010. 西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义. 矿物岩石, 30(3): 38-43.
|
付文春, 康志强, 潘会彬, 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义. 地质通报, 33(6): 850-859.
|
高雪, 邓军, 孟健寅, 等, 2014. 滇西红牛矽卡岩型铜矿床石榴子石特征. 岩石学报, 30(9): 2695-2708.
|
侯增谦, 王二七, 2008. 印度-亚洲大陆碰撞成矿作用主要研究进展. 地球学报, 29(3): 275-292.
|
侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
|
姜军胜, 2018. 冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士毕业论文). 武汉: 中国地质大学.
|
李光明, 刘波, 屈文俊, 等, 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: 来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490.
|
李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
|
莫宣学, 赵志丹, Don J DEPAOLO, 等, 2006. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据. 岩石学报, 22(4): 795-803.
|
欧阳永棚, 周显荣, 尧在雨, 等, 2020. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示. 地学前缘, 27(4): 219-231.
|
潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
|
秦克章, 夏代祥, 李光明, 等, 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京: 科学出版社.
|
唐菊兴, 陈毓川, 多吉, 等, 2009. 西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价. 矿物学报, 29(S1): 476-478.
|
王一川, 段登飞, 2021. 矽卡岩中石榴子石的稀土配分特征及其成因指示. 北京大学学报(自然科学版), 57(3): 446-458.
|
吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士毕业论文). 北京: 中国地质大学(北京).
|
谢富伟, 郎兴海, 唐菊兴, 等, 2022. 西藏冈底斯成矿带成矿规律. 矿床地质, 41(5): 952-974.
|
谢桂青, 陈小龙, 马龙敬, 等, 2021. 冈底斯成矿带林周县程巴矽卡岩铜多金属矿床特征: 对藏南区域古新世铜矿床的找矿启示. 矿床地质, 40(3): 625-630.
|
徐净, 郑有业, 孙祥, 等, 2014. 西藏知不拉矽卡岩型铜矿床矿物学特征及地质意义. 地球科学, 39(6): 654-670, 768. doi: 10.3799/dqkx.2014.062
|
杨志明, 侯增谦, 夏代详, 等, 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36.
|
赵亚云, 刘晓峰, 杨春四, 等, 2022. 西藏唐格矽卡岩型铜多金属矿床A型花岗岩的识别及其对成岩成矿的指示. 中国地质, 49(2): 496-517.
|
郑有业, 多吉, 王瑞江, 等, 2007. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334.
|
郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239.
|
郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
|
周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103.
|
朱弟成, 莫宣学, 赵志丹, 等, 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20.
|