• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Du Xiaoyu, Jin Zhijun, Zeng Lianbo, Liu Guoping, He Wenjun, Yang Sen, Liang Xinping, Lu Guoqing, 2024. Development Model of Natural Fractures in Continental Shale of the Pingdiquan Formation in the Shuangjingzi Area, Eastern Junggar Basin. Earth Science, 49(9): 3264-3275. doi: 10.3799/dqkx.2024.022
    Citation: Du Xiaoyu, Jin Zhijun, Zeng Lianbo, Liu Guoping, He Wenjun, Yang Sen, Liang Xinping, Lu Guoqing, 2024. Development Model of Natural Fractures in Continental Shale of the Pingdiquan Formation in the Shuangjingzi Area, Eastern Junggar Basin. Earth Science, 49(9): 3264-3275. doi: 10.3799/dqkx.2024.022

    Development Model of Natural Fractures in Continental Shale of the Pingdiquan Formation in the Shuangjingzi Area, Eastern Junggar Basin

    doi: 10.3799/dqkx.2024.022
    • Received Date: 2023-01-11
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • The Permian Pingdiquan Formation shale oil resources in the eastern Junggar basin are abundant, however, the exploration and development of shale oil are hindered since natural fractures serve as important storage spaces and fluid migration channels for hydrocarbons there. In this paper, the development characteristics and controlling factors of natural fractures in the Pingdiquan Formation were analyzed through detailed characterization of outcrops in the Shuangjizi area, and the distribution patterns of fractures were discussed based on these findings. The results show that the natural fractures in the Pingdiquan Formation in the Shuangjizi area of the Junggar basin include three types: bed-bounded fractures, unbounded fractures, and bed-parallel fractures, with the bed-bounded fractures being the most extensively developed and distributed. The development of natural fractures is influenced by lithology, rock mechanics layers, and structures, which is mainly manifested in: (1) the degree of development of fractures in different lithologies varies, with the most developed fractures occurring in siltstone and tuffaceous siltstone; (2) the development of fractures is controlled by rock mechanics layers, with the degree of development of natural fractures being higher in thinner rock mechanical stratigraphy; and (3) there is a fracture development zone near faults, with the degree of development of fractures being higher closer to the fault plane, on the footwall and at the end of the fault. The types and distribution characteristics of fractures differ greatly in different rock layers and structural positions, with intraformational open fractures being mostly developed in rock mechanical stratigraphy with greater brittleness, transformational shear fractures can cut through multiple sets of rock layers, and bed-parallel shear fractures mainly develop in rock layers with higher mud content. The formation and distribution of fractures are closely related to the differences in rock mechanics properties between sandstone and mudstone interbeds, as well as the thickness of mudstone interbeds.

       

    • loading
    • Bai, H., Pang, X., Kuang, L., et al., 2017. Depositional Environment, Hydrocarbon Generation and Expulsion Potential of the Middle Permian Pingdiquan Source Rocks Based on Geochemical Analyses in the Eastern Junggar Basin, NW China. Australian Journal of Earth Sciences, 64(4): 497-518. https://doi.org/10.1080/08120099.2017.1310139
      Bai, J. K., Zhang, S. H., Liu, C. Y., et al., 2022. Mineralogy and Geochemistry of the Middle Permian Pingdiquan Formation Black Shales on the Eastern Margin of the Junggar Basin, North-West China: Implications for Palaeoenvironmental and Organic Matter Accumulation Analyses. Geological Journal, 57(5): 1989-2006. https://doi.org/10.1002/gj.4392
      Ding, W. L., Li, C., Li, C. Y., et al., 2012. Fracture Development in Shale and Its Relationship to Gas Accumulation. Geoscience Frontiers, 3(1): 97-105. https://doi.org/10.1016/j.gsf.2011.10.001
      Du, X. Y., Jin, Z. J., Zeng, L. B., et al., 2023. Characteristics and Controlling Factors of Natural Fractures in Deep Lacustrine Shale Oil Reservoirs of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin, China. Journal of Structural Geology, 175: 104923. https://doi.org/10.1016/j.jsg.2023.104923
      Du, X. Y., Jin, Z. J., Zeng, L. B., et al., 2023. Development Characteristics and Controlling Factors of Natural Fractures in Chang 7 Shale Oil Reservoir, Longdong Area, Ordos Basin. Earth Science, 48(7): 2589-2600 (in Chinese with English abstract).
      Fan, Y., Wang, X. L., Xiang, C. F., et al., 2022. Enrichment Patterns and Main Controlling Factors of Source Rocks in the Permian Pingdiquan Formation, Eastern Junggar Basin. Geoscience, 36(4): 1105-1117 (in Chinese with English abstract).
      Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      Gale, J. F. W., Reed, R. M., Holder, J., 2007. Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments. AAPG Bulletin, 91(4): 603-622. https://doi.org/10.1306/11010606061
      Ghosh, S., Galvis-Portilla, H. A., Klockow, C. M., et al., 2018. An Application of Outcrop Analogues to Understanding the Origin and Abundance of Natural Fractures in the Woodford Shale. Journal of Petroleum Science and Engineering, 164: 623-639. https://doi.org/10.1016/j.petrol.2017.11.073
      Guan, J., Cao, F., Chen, Y., 2011. Exploration Potentials of Pingdiquan Formation of Permian in Kelameili Piedmont of Junggar Basin. Xinjiang Petroleum Geology, 32(2): 115-118 (in Chinese with English abstract).
      He, J. H., Ding, W. L., Zhang, J. C., et al., 2016. Logging Identification and Characteristic Analysis of Marine-Continental Transitional Organic-Rich Shale in the Carboniferous-Permian Strata, Bohai Bay Basin. Marine and Petroleum Geology, 70: 273-293. https://doi.org/10.1016/j.marpetgeo.2015.12.006
      Heidari, M., Khanlari, G. R., Torabi-Kaveh, M., et al., 2014. Effect of Porosity on Rock Brittleness. Rock Mechanics and Rock Engineering, 47(2): 785-790. https://doi.org/10.1007/s00603-013-0400-0
      Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2-Shale-Oil Resource Systems., In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir, Tulsa. https://doi.org/10.1306/13321447m973489
      Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract).
      Kuang, L. C., Zhi, D. M., Wang, X. J., et al., 2021. Oil and Gas Accumulation Assemblages in Deep to Ultra-Deep Formations and Exploration Targets of Petroliferous Basins in Xinjiang Region. China Petroleum Exploration, 26(4): 1-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.04.001
      Laubach, S. E., Olson, J. E., Gross, M. R., 2009. Mechanical and Fracture Stratigraphy. AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094
      Li, H., Liu, Y. Q., Zhang, L. X., et al., 2017. Origin and Geological Significance of Sedimentary Exhalative Rocks with "Porphyritic" Structures in the Middle Permian Pingdiquan Formation, Eastern Junggar Basin. Journal of Palaeogeography (Chinese Edition), 19(2): 211-226 (in Chinese with English abstract).
      Liu, G. P., Zeng, L. B., Li, H. N., et al., 2020a. Natural Fractures in Metamorphic Basement Reservoirs in the Liaohe Basin, China. Marine and Petroleum Geology, 119: 104479. https://doi.org/10.1016/j.marpetgeo.2020.104479
      Liu, G. P., Zeng, L. B., Sun, G. Q., et al., 2020b. Natural Fractures in Tight Gas Volcanic Reservoirs and Their Influences on Production in the Xujiaweizi Depression, Songliao Basin, China. AAPG Bulletin, 104(10): 2099-2123. https://doi.org/10.1306/05122017169
      Liu, J. S., Chen, P., Xu, K., et al., 2022. Fracture Stratigraphy and Mechanical Stratigraphy in Sandstone: A Multiscale Quantitative Analysis. Marine and Petroleum Geology, 145: 105891. https://doi.org/10.1016/j.marpetgeo.2022.105891
      Liu, J. S., Mei, L. F., Ding, W. L., et al., 2023. Asymmetric Propagation Mechanism of Hydraulic Fracture Networks in Continental Reservoirs. GSA Bulletin, 135(3-4): 678-688. https://doi.org/10.1130/b36358.1
      Ma, S. J., Zeng, L. B., Shi, X. W., et al., 2023. Characteristics and Main Controlling Factors of Natural Fractures in Marine Shale in Luzhou Area, Sichuan Basin. Earth Science, 48(7): 2630-2642 (in Chinese with English abstract).
      Mao, Z., Zeng, L. B., Liu, G. P., et al., 2020. Characterization and Effectiveness of Natural Fractures in Deep Tight Sandstones at the South Margin of the Junggar Basin, NorthWestern China. Oil & Gas Geology, 41(6): 1212-1221 (in Chinese with English abstract).
      Shang, L., Dai, J. S., Feng, J. W., et al., 2015. Effect of Strata Thickness on Fracture Development in Sand-Mud Interbed. Xinjiang Petroleum Geology, 36(1): 35-41 (in Chinese with English abstract).
      Song, Y., Yang, Z. F., He, W. J., et al., 2022. Exploration Progress of Alkaline Lake Type Shale Oil of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin. China Petroleum Exploration, 27(1): 60-72 (in Chinese with English abstract).
      Tang, Y., He, W. J., Jiang, Y. Y., et al., 2023. Enrichment Conditions and Exploration Direction of Permian Saline Lacustrine Shale Oil and Gas in Junggar Basin. Acta Petrolei Sinica, 44(1): 125-143 (in Chinese with English abstract).
      Tang, Y., Hou, Z. S., Wang, X. T., et al., 2022. Progress of the Carboniferous and Permian Stratigraphic Framework and Correlation of the Junggar Basin, Xinjiang, Northwest China. Geological Review, 68(2): 385-407 (in Chinese with English abstract).
      Wang, M., Chen, Y., Bain, W. M., et al., 2020. Direct Evidence for Fluid Overpressure during Hydrocarbon Generation and Expulsion from Organic-Rich Shales. Geology, 48(4): 374-378. https://doi.org/10.1130/G46650.1
      Wang, R. Y., Ding, W. L., Gong, D. J., et al., 2016. Development Characteristics and Major Controlling Factors of Shale Fractures in the Lower Cambrian Niutitang Formation, Southeastern Chongqing-Northern Guizhou Area. Acta Petrolei Sinica, 37(7): 832-845, 877 (in Chinese with English abstract).
      Wang, R. Y., Hu, Z. Q., Liu, J. S., et al., 2018. Comparative Analysis of Characteristics and Controlling Factors of Fractures in Marine and Continental Shales: A Case Study of the Lower Cambrian in Cengong Area, Northern Guizhou Province. Oil & Gas Geology, 39(4): 631-640 (in Chinese with English abstract).
      Wang, X. J., Song, Y., Zheng, M. L., et al., 2022. Tectonic Evolution of and Hydrocarbon Accumulation in the Western Junggar Basin. Earth Science Frontiers, 29(6): 188-205 (in Chinese with English abstract).
      Wang, Y., Yu, H. Z., Xiong, W., et al., 2021. Sequence Sedimentary Characteristics and Petroleum Geological Significance of Permian Pingdiquan Formation in Shiqiantan Sag. Petroleum Geology and Recovery Efficiency, 28(4): 35-45 (in Chinese with English abstract).
      Zeng, L. B., Lü, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract).
      Zeng, L. B., Su, H., Tang, X. M., et al., 2013. Fractured Tight Sandstone Oil and Gas Reservoirs: A New Play Type in the Dongpu Depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363-377. https://doi.org/10.1306/09121212057
      Zeng, L. B., Lü, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048
      Zeng, L. B., Ma, S. J., Tian, H., et al., 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract).
      Zhang, C., Liu, D. D., Jiang, Z. X., et al., 2022. Mechanism for the Formation of Natural Fractures and Their Effects on Shale Oil Accumulation in Junggar Basin, NW China. International Journal of Coal Geology, 254: 103973. https://doi.org/10.1016/j.coal.2022.103973
      Zhang, L. X., Liu, Y. Q., Xiang, H., et al., 2018. Characteristics and Origin of Tuffaceous Tight Oil: Based on a Reference of Tight Oil in Permain Pingdiquan Formation in Huoshaoshan Oil Field, Junggar Basin. Acta Sedimentologica Sinica, 36(4): 768-776 (in Chinese with English abstract).
      Zhang, Z. J., Cheng, D. W., Zhou, C. M., et al., 2021. Characteristics of Fine-Grained Rocks in the Pingdiquan Formation in Well Shishu 1 and Their Significances for Shale Oil Explorations in Northeastern Junggar Basin. Natural Gas Geoscience, 32(4): 562-576 (in Chinese with English abstract).
      Zheng, M. L., Tian, A. J., Yang, T. Y., et al., 2018. Structural Evolution and Hydrocarbon Accumulation in the Eastern Junggar Basin. Oil & Gas Geology, 39(5): 907-917 (in Chinese with English abstract).
      Zhi, D. M., Song, Y., He, W. J., et al., 2019. Geological Characteristics, Resource Potential and Exploration Direction of Shale Oil in Middle-Lower Permian, Junggar Basin. Xinjiang Petroleum Geology, 40(4): 389-401 (in Chinese with English abstract).
      Zou, C. N., Yang, Z., Cui, J. W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26 (in Chinese with English abstract).
      杜晓宇, 金之钧, 曾联波, 等, 2023. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素. 地球科学, 48(7): 2589-2600. doi: 10.3799/dqkx.2023.208
      樊妍, 王绪龙, 向才富, 等, 2022. 准噶尔盆地东部二叠系平地泉组烃源岩富集规律与主控因素. 现代地质, 36(4): 1105-1117.
      关键, 曹锋, 陈勇, 2011. 准噶尔盆地卡拉麦里山前平地泉组勘探潜力. 新疆石油地质, 32(2): 115-118.
      金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287.
      匡立春, 支东明, 王小军, 等, 2021. 新疆地区含油气盆地深层‒超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1-16.
      李红, 柳益群, 张丽霞, 等, 2017. 准噶尔盆地东部中二叠统平地泉组具"斑状" 结构热水喷流沉积岩的成因及地质意义. 古地理学报, 19(2): 211-226.
      马诗杰, 曾联波, 石学文, 等, 2023. 四川盆地泸州地区海相页岩天然裂缝特征及主控因素. 地球科学, 48(7): 2630-2642. doi: 10.3799/dqkx.2022.226
      毛哲, 曾联波, 刘国平, 等, 2020. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性. 石油与天然气地质, 41(6): 1212-1221.
      商琳, 戴俊生, 冯建伟, 等, 2015. 砂泥岩互层裂缝发育的地层厚度效应. 新疆石油地质, 36(1): 35-41.
      宋永, 杨智峰, 何文军, 等, 2022. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展. 中国石油勘探, 27(1): 60-72.
      唐勇, 何文军, 姜懿洋, 等, 2023. 准噶尔盆地二叠系咸化湖相页岩油气富集条件与勘探方向. 石油学报, 44(1): 125-143.
      唐勇, 侯章帅, 王霞田, 等, 2022. 准噶尔盆地石炭纪‒二叠纪地层对比框架新进展. 地质论评, 68(2): 385-407.
      王濡岳, 丁文龙, 龚大建, 等, 2016. 渝东南‒黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素. 石油学报, 37(7): 832-845, 877.
      王濡岳, 胡宗全, 刘敬寿, 等, 2018. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比: 以黔北岑巩地区下寒武统为例. 石油与天然气地质, 39(4): 631-640.
      王小军, 宋永, 郑孟林, 等, 2022. 准噶尔西部陆内盆地构造演化与油气聚集. 地学前缘, 29(6): 188-205.
      王越, 于洪州, 熊伟, 等, 2021. 石钱滩凹陷二叠系平地泉组层序沉积特征及石油地质意义. 油气地质与采收率, 28(4): 35-45.
      曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454.
      曾联波, 马诗杰, 田鹤, 等, 2023. 富有机质页岩天然裂缝研究进展. 地球科学, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190
      张丽霞, 柳益群, 向辉, 等, 2018. 凝灰岩型含油层系特征与成因分析: 以准噶尔盆地火烧山油田二叠系平地泉组为例. 沉积学报, 36(4): 768-776.
      张志杰, 成大伟, 周川闽, 等, 2021. 准噶尔盆地石树沟凹陷平地泉组细粒岩特征及其对准东北地区页岩油勘探的指示意义. 天然气地球科学, 32(4): 562-576.
      郑孟林, 田爱军, 杨彤远, 等, 2018. 准噶尔盆地东部地区构造演化与油气聚集. 石油与天然气地质, 39(5): 907-917.
      支东明, 宋永, 何文军, 等, 2019. 准噶尔盆地中‒下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389-401.
      邹才能, 杨智, 崔景伟, 等, 2013. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (237) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return