• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Li Bin, Wei Junhao, Gao Qiang, Lai Lianxin, Li Xiaolong, Zhang Shengtao, Du Yumei, 2025. Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun. Earth Science, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025
    Citation: Li Bin, Wei Junhao, Gao Qiang, Lai Lianxin, Li Xiaolong, Zhang Shengtao, Du Yumei, 2025. Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun. Earth Science, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025

    Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun

    doi: 10.3799/dqkx.2024.025
    • Received Date: 2023-10-09
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • The Silurian magmatic rocks of the East Kunlun Orogen are of great significance in determining the collisional evolution process of the proto-Tethys Ocean. In this study, the petrographic, chronological, geochemical and Hf isotope analysis were carried out for Mailong granodiorite and monzogranite exposed in the Gouli area of the eastern section of the East Kunlun orogenic belt, and the rock genesis and formation were discussed accordingly construction background. The results show that the zircon weighted mean ages of Mailong monzonite and granodiorite are 438±3 Ma and 426±2 Ma, which indicated it was formed in Early Silurian and Late Silurian. The granodiorite is characterized by high silic, enrichment of alkaline, but depletion in calcium, magnesium, titanium and phosphorus. The A/CNK values range from 1.01 to 1.08.The rock is obviously enriched in large ion lithophile elements (LILE; K, Rb, Sr, U, Th etc.) and depleted in high field strength elements (HFSE; Nb, Ta, Ti etc.), with negative Eu anomalies. The zircon εHf (t) value has a wide range (from -3.54 to -0.56), and the two-stage mode age T2DM (Hf) is 1 805 to 592 Ma. The granodiorite is characterized by high aluminum, high strontium content, high Sr/Y and (La/Yb)N ratio and lower yttrium content. The total amount of rare earth elements in the rock is low, the differentiation between light and heavy rare earth elements is obvious, with positive Eu anomaly characteristics. εHf(t) ranges from -4.9 to -0.7, and the two-stage model age T2DM (Hf) is 1 559 to 1 332 Ma. The monzonite showing characteristics of highly fractionated I-type granites, it is formed by a high degree of separation and crystallization after the mixing of felsic magma in the lower crust and mafic magma in the mantle. But the granodiorite has the characteristics of adakite, it is formed by subsequent crystallization after partial melting of the thickened juvenile lower crust. Combining with new regional studies, the monzonite and granodiorite may have been formed in a syn-collision environment and a transition environment from syn-collision to post-collision extension. It proposes that the East Kunlun area began to enter the syn-collision stage at least in the Early Silurian (440 Ma), experiencing a period of rapid continental collision (440-427 Ma), and due to slab break-off began to transform from the syn-collision stage to the post-collision extension stage between 427 to 425 Ma.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U–Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Bi, H. Z., Song, S. G., Yang, L. M., et al., 2020. UHP Metamorphism Recorded by Coesite-Bearing Metapelite in the East Kunlun Orogen (NW China). Geological Magazine, 157(2): 160-172. https://doi.org/10.1017/s0016756819000529
      Bi, H. Z., Whitney, D. L., Song, S. G., et al., 2022. HP-UHP Eclogites in the East Kunlun Orogen, China: P-T Evidence for Asymmetric Suturing of the Proto-Tethys Ocean. Gondwana Research, 104: 199-214. https://doi.org/10.1016/j.gr.2021.04.008
      Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. https://doi.org/10.1016/j.earscirev.2013.05.006
      Chen, J. J., Fu, L. B., Wei, J. H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882(in Chinese with English abstract).
      Chen, J. J., Fu, L. B., Wei, J. H., et al., 2020. Proto-Tethys Magmatic Evolution along Northern Gondwana: Insights from Late Silurian-Middle Devonian A-Type Magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos, 356: 105304. https://doi.org/10.1016/j.lithos.2019.105304
      Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.03.013
      Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 126(3-4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004
      Condie, K. C., 2005. TTGS and Adakites: Are They Both Slab Melts? Lithos, 80(1-4): 33-44. http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1016/j.lithos.2003.11.001">https://doi.org/10.1016/j.lithos.2003.11.001
      Cui, M. H., Meng, F. C., Wu, X. K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379(in Chinese with English abstract).
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006
      Dong, G. C., Luo, M. F., Mo, X. X., et al., 2018. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003
      Dong, Y. P., Sun, S. S., He, D. F., et al., 2024. Early Paleozoic Back-Arc Basin in the East Kunlun Orogen, Northern Tibetan Plateau: Insight from the Wutumeiren Ophiolitic Mélange. Lithos, 464: 107460. https://doi.org/10.1016/j.lithos.2023.107460
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      Feng, D., Wang, C., Song, S. G., et al., 2023. Tracing Tectonic Processes from Proto- to Paleo-Tethys in the East Kunlun Orogen by Detrital Zircons. Gondwana Research, 115: 1-16. https://doi.org/10.1016/j.gr.2022.11.003
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Fu, L. B., Bagas, L., Wei, J. H., et al., 2022. Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen, Northern Tibetan Plateau. Geological Society of America Bulletin, 135(7-8): 1709-1733.
      Fu, L. B., Wei, J. H., Tan, J., et al., 2016. Magma Mixing in the Kalaqin Core Complex, Northern North China Craton: Linking Deep Lithospheric Destruction and Shallow Extension. Lithos, 260: 390-412. https://doi.org/10.1016/j.lithos.2016.06.018
      Gao, X. F., Xiao, P. X., Xie, C. R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.07.005
      Guo, F., Wang, P. X., Bian, X. D., et al., 2020. Geochronological and Geochemical Characteristics and Geological Significance of the Monzogranite in Xiarihamu Area of East Kunlun. Geological Survey of China, 7(6): 51-60(in Chinese with English abstract).
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318(in Chinese with English abstract).
      Han, Z. H., Sun, F. Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30(in Chinese with English abstract).
      He, D. F., Dong, Y. P., Liu, X. M., et al., 2016. Tectono-Thermal Events in East Kunlun, Northern Tibetan Plateau: Evidence from Zircon U-Pb Geochronology. Gondwana Research, 30: 179-190. https://doi.org/10.1016/j.gr.2015.08.002
      He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377-393. https://doi.org/10.1016/j.precamres.2018.06.017
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, Y. M., Li, X. W., Mo, X. X., et al., 2023. Early Paleozoic Subduction Imprints of the Proto-Tethys Ocean: Evidence from the Appinite-Diorite-Granodiorite Complex in East Kunlun, Northern Tibet. Lithos, 452-453: 107215. https://doi.org/10.1016/j.lithos.2023.107215
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/C2JA30078H
      Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1-2): 1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014
      Jenkyns, H. C., Forster, A., Schouten, S., et al., 2004. High Temperatures in the Late Cretaceous Arctic Ocean. Nature, 432(7019): 888-892. https://doi.org/10.1038/nature03143
      Jia, L. H., Meng, F. C., Feng, H. B., 2014. Fluid Activity during Eclogite-Facies Peak Metamorphism: Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China. Acta Petrologica Sinica, 30(8): 2339-2350(in Chinese with English abstract).
      Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. Geochemistry and Zircon U–Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2018. Cambrian (~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2020. Late Silurian to Early Devonian Volcanics in the East Kunlun Orogen, Northern Tibetan Plateau: Record of Postcollisional Magmatism Related to the Evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140: 101780. https://doi.org/10.1016/j.jog.2020.101780
      Li, R. B., Pei, X. Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi'ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006
      Li, Y. J., Gao, Y. J., Zhou, H., et al., 2023. Early Paleozoic Collision-Related Structures in the Tarim Craton, NW China: Implications for the Proto-Tethys Evolution. Journal of Asian Earth Sciences, 241: 105458. https://doi.org/10.1016/j.jseaes.2022.105458
      Liu, B., Ma, C. Q., Jiang, H. A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Liu, B., Wu, L. H., Ma, C. Q., et al., 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
      Meng, F. C., Cui, M. H., Jia, L. H., et al., 2015. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrologica Sinica, 31(12): 3581-3594(in Chinese with English abstract).
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Peng, B., Sun, F. Y., Li, B. L., et al., 2016. The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province, China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Ore Geology Reviews, 73: 13-28. https://doi.org/10.1016/j.oregeorev.2015.10.014
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
      Qi, X. P., Fan, X. G., Yang, J., et al., 2016. The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance. Geological Bulletin of China, 35(11): 1771-1783(in Chinese with English abstract).
      Ren, J. H., Liu, Y. Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145(in Chinese with English abstract).
      Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta Supplement, 67(18): 403.
      Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089
      Song, S. G.; Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940(in Chinese). doi: 10.1360/zd-2015-45-7-916
      Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155
      Sun, J., Qian, Y., Li, Y., et al., 2021. Intermittent Subduction of the Paleo-Tethys Ocean in the Middle-Late Permian: Evidence from the Mafic-Intermediate Intrusive Rocks in the East Kunlun Orogenic Belt. Australian Journal of Earth Sciences, 68(2): 229-244. https://doi.org/10.1080/08120099.2020.1764623
      Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton: In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence. Lithos, 120(3/4): 421-438. https://doi.org/10.1016/j.lithos.2010.09.002
      Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006
      Sun, S. S., McDonough, W. F., et al., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tong, H. K., Long, L. L., Wang, Y. W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369(in Chinese with English abstract).
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, B. Z., Zhang, J. M., Li, W. F., et al., 2023. Discovery of Two Stages of the Early Paleozoic Adakitic Intrusive Rocks in the Kunlun River Area, East Kunlun: Implications for Collisional Orogenic Processes. Acta Petrologica Sinica, 39(3): 763-784(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.03.09
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006
      Wang, X. X., Hu, N. G., Wang, T., et al., 2012. Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin: Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry. Acta Petrologica Sinica, 28(9): 2950-2962(in Chinese with English abstract).
      Wang, Y. L., Xue, S. C., Wang, X. M., et al., 2023. PGE Geochemical and Os-S-Sr-Nd Isotopic Constraints on the Genesis of the Shitoukengde Magmatic Sulfide Deposit in the East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 156: 105396. https://doi.org/10.1016/j.oregeorev.2023.105396
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765(in Chinese). doi: 10.1360/N072016-00139
      Xiong, F. H., Ma, C. Q., Wu, L., et al., 2015. Geochemistry, Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of an Ordovician Appinitic Pluton in the East Kunlun Orogen: New Evidence for Proto-Tethyan Subduction. Journal of Asian Earth Sciences, 111: 681-697. https://doi.org/10.1016/j.jseaes.2015.05.025
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1
      Xu, Z. H., Xin, W., Zhou, X. D., et al., 2023. Triassic Granitoids in the East Kunlun Orogenic Belt, Northwestern China: Magmatic Source and Implications for Geodynamic Evolution. International Geology Review, 65(7): 983-999. https://doi.org/10.1080/00206814.2020.1848647
      Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.02.001
      Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2): 335-347. https://doi.org/10.1007/s12583-018-1203-8
      Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yu, M., Feng, C. Y., Santosh, M., et al., 2017. The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103-123. https://doi.org/10.1016/j.earscirev.2017.02.008
      Zhang, J. Y., Lei, H. L., Ma, C. Q., et al., 2021. Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension. Gondwana Research, 89: 131-146. https://doi.org/10.1016/j.gr.2020.08.019
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, Z. W., Tang, Q. Y., Li, C. S., et al., 2017. Sr-Nd-Os-S Isotope and PGE Geochemistry of the Xiarihamu Magmatic Sulfide Deposit in the Qinghai-Tibet Plateau, China. Mineralium Deposita, 52(1): 51-68. https://doi.org/10.1007/s00126-016-0645-0
      Zhao, X., Fu, L. B., Santosh, M., et al., 2022. The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233: 104190. https://doi.org/10.1016/j.earscirev.2022.104190
      Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360: 105446. https://doi.org/10.1016/j.lithos.2020.105446
      Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011
      Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164(in Chinese with English abstract).
      陈加杰, 付乐兵, 魏俊浩, 等, 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863-1882. doi: 10.3799/dqkx.2016.129
      陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      崔美慧, 孟繁聪, 吴祥珂, 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379.
      高晓峰, 校培喜, 谢从瑞, 等, 2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      郭峰, 王盘喜, 卞孝东, 等, 2020. 东昆仑夏日哈木地区二长花岗岩年代学、地球化学特征及地质意义. 中国地质调查, 7(6): 51-60.
      国显正, 贾群子, 李金超, 等, 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义. 地球科学, 43(12): 4300-4318. doi: 10.3799/dqkx.2018.142
      韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
      贾丽辉, 孟繁聪, 冯惠彬, 2014. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据. 岩石学报, 30(8): 2339-2350.
      刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106.
      刘彬, 伍炼华, 马昌前, 等, 2023. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义. 地球科学, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
      孟繁聪, 崔美慧, 贾丽辉, 等, 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581-3594.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      祁晓鹏, 范显刚, 杨杰, 等, 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义. 地质通报, 35(11): 1771-1783.
      任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145.
      宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940.
      童海奎, 龙灵利, 王玉往, 等, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
      王秉璋, 张金明, 李五福, 等, 2023. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示. 岩石学报, 39(3): 763-784.
      王晓霞, 胡能高, 王涛, 等, 2012. 柴达木盆地南缘晚奥陶世万宝沟花岗岩: 锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学. 岩石学报, 28(9): 2950-2962.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
      周红智, 魏俊浩, 石文杰, 等, 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异I型花岗岩的证据. 地质科技通报, 39(4): 150-164.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(3)

      Article views (131) PDF downloads(36) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return