• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei, 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027
    Citation: Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei, 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027

    Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques

    doi: 10.3799/dqkx.2024.027
    • Received Date: 2023-11-21
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • The surface of Mars has been sculpted by a diversity of long-lasting aqueous systems and likely had a more habitable environment in the past. During recent decades, the ancient habitable environments and evolutionary history of Mars have been interesting topics of planetary science research and deep space exploration. The Qaidam Basin, located on the northeastern Tibetan Plateau, has been considered to be an ideal analog to ancient Mars due to its limited aqueous activity, coldness, aridity, and high UV radiation. This study combined remote sensing image analysis, short-wave infrared spectroscopy, laser-induced breakdown spectroscopy, X-ray diffraction, and X-ray fluorescence to analyze the spectral characteristics and mineral and elemental compositions of surface soils sampled from representative Mars-like landforms (including alluvial fan, dune, debris flow, gully, yardang, playa, and polygon) across the Qaidam Basin. Results of this study reveal that the mineral composition of Mars-like Qaidam landforms is primarily composed of quartz, albite, gypsum, and calcite, as well as illite, chlorite, microcline, and halite. Samples from the yardang and alluvial fan demonstrated their high preservation capacities of carbonates, clay minerals, and organic matter. These findings offer valuable insights for the interpretation of in-situ spectroscopic data and environmental chemical analyses of paleohydrologic settings on Mars from the perspective of comparative planetology.

       

    • loading
    • Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's Terra Platform. International Journal of Remote Sensing, 21(5): 847-859. https://doi.org/10.1080/014311600210326
      Amao, A. O., Al-Otaibi, B., Al-Ramadan, K., 2022. High-Resolution X-Ray Diffraction Datasets: Carbonates. Data Brief, 42: 108204. https://doi.org/10.1016/j.dib.2022.108204
      Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856-888. https://doi.org/10.1002/2017je005293
      Bishop, J. L., Pieters, C. M., Edwards, J. O., 1994. Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42(6): 702-716. https://doi.org/10.1346/ccmn.1994.0420606
      Bosak, T., Moore, K. R., Gong, J., et al., 2021. Searching for Biosignatures in Sedimentary Rocks from Early Earth and Mars. Nature Reviews Earth & Environment, 2(7): 490-506. https://doi.org/10.1038/s43017-021-00169-5
      Cardenas, B. T., Stacey, K., 2023. Landforms Associated with the Aspect-Controlled Exhumation of Crater-Filling Alluvial Strata on Mars. Geophysical Research Letters, 50(15): e2023GL103618. https://doi.org/10.1029/2023gl103618
      Chen, K. Z., Bowler, J. M., 1986. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54(1-4): 87-104. https://doi.org/10.1016/0031-0182(86)90119-7
      Chen, Q., Zhao, Z. F., Zhou, J. X., et al., 2022a. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5): 1253. https://doi.org/10.3390/rs14051253
      Chen, Y., Shen, J. X., Liu, L., et al., 2022b. Preservation of Organic Matter in Aqueous Deposits and Soils across the Mars-Analog Qaidam Basin, NW China: Implications for Biosignature Detection on Mars. Journal of Geophysical Research: Planets, 127(12): e2022JE007418. https://doi.org/https://doi.org/10.1029/2022JE007418
      Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
      Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., 2006. Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy. Icarus, 184(1): 121-157. https://doi.org/10.1016/j.icarus.2006.04.003
      Crowley, J. K., 1991. Visible and Near-Infrared (0.4-2.5 μm) Reflectance Spectra of Playa Evaporite Minerals. Journal of Geophysical Research: Solid Earth, 96(B10): 16231-16240. https://doi.org/10.1029/91jb01714
      Crowley, J. K., Hook, S. J., 1996. Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with Multispectral Thermal Infrared Images. Journal of Geophysical Research: Solid Earth, 101(B1): 643-660. https://doi.org/10.1029/95jb02813
      Cui, Z. C., Jia, L. C., Li, L. N., et al., 2022. A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars. Remote Sensing, 14(9): 1954. https://doi.org/10.3390/rs14091954
      Des Marais, D. J., Nuth, J. A. Ⅲ, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819
      Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
      Gendrin, A., Mangold, N., Bibring, J. P., et al., 2005. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science, 307(5715): 1587-1591. https://doi.org/10.1126/science.1109087
      He, Z. P., Xu, R., Li, C. L., et al., 2021. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space Science Reviews, 217(2): 27. https://doi.org/10.1007/s11214-021-00804-z
      Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3): 201-243. https://doi.org/10.1089/ast.2015.1441
      Hu, B., Zhang, C. X., Wu, H. B., et al., 2019. Clay Mineralogy of an Eocene Fluvial-Lacustrine Sequence in Xining Basin, Northwest China, and Its Paleoclimatic Implications. Science China Earth Sciences, 62(3): 571-584. https://doi.org/10.1007/s11430-018-9282-8
      Huang, Q., Han, F. Q., 2007. Salt Lake Evolution and Paleoclimate Fluctuation in Qaidam Basin. Science Press, Beijing (in Chinese).
      Kong, F. J., Zheng, M. P., Hu, B., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: Ⅰ. Evolution and Environments. Astrobiology, 18(10): 1243-1253. https://doi.org/10.1089/ast.2018.1830
      Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science, 307(5715): 1584-1586. https://doi.org/10.1126/science.1109091
      Li, L. L., Dong, Z. B., Li, C., et al., 2018. Comparison of Yardang Morphology on the Earth and the Mars: Taking the Elysium Planitia and the Qaidam Basin for an Example. Journal of Desert Research, 38(4): 716-723 (in Chinese with English abstract).
      Lin, H. L., Xu, R., Lin, Y. T., et al., 2023. In-Flight Calibration of Near-Infrared Reflectance Spectra Measured by the Zhurong Mars Rover. Earth and Space Science, 10(2): e2022EA002624. https://doi.org/10.1029/2022ea002624
      Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
      Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
      Liu, C. Q., Ling, Z. C., Wu, Z. C., et al., 2022a. Aqueous Alteration of the Vastitas Borealis Formation at the Tianwen-1 Landing Site. Communications Earth & Environment, 3(1): 280. https://doi.org/10.1038/s43247-022-00614-3
      Liu, Y., Wu, X., Zhao, Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
      Liu, Z. Y., Li, L. N., Xu, W. M., et al., 2023. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing, 15(13): 3311. https://doi.org/10.3390/rs15133311
      Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1-4): 43-81. https://doi.org/10.1007/s11214-017-0369-1
      McKeown, N. K., Bishop, J. L., Noe Dobrea, E. Z., et al., 2009. Characterization of Phyllosilicates Observed in the Central Mawrth Vallis Region, Mars, Their Potential Formational Processes, and Implications for Past Climate. Journal of Geophysical Research: Planets, 114(E2): E00D10. https://doi.org/10.1029/2008je003301
      Ralchenko, Y., Kramida, A., 2020. Development of NIST Atomic Databases and Online Tools. Atoms, 8(3): 56. https://doi.org/10.3390/atoms8030056
      Rieser, A. B., Bojar, A. V., Neubauer, F., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063-1075. https://doi.org/10.1007/s00531-008-0304-5
      Rohrmann, A., Heermance, R., Kapp, P., et al., 2013. Wind as the Primary Driver of Erosion in the Qaidam Basin, China. Earth and Planetary Science Letters, 374: 1-10. https://doi.org/10.1016/j.epsl.2013.03.011
      Rotz, R., 2020. Geomorphic-Geologic Indicators of Zones of Hydrologic Flux in Drylands on Earth and Mars (Dissertation). University of Georgia, Georgia.
      Shen, J., Zerkle, A. L., Stueeken, E., et al., 2019. Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System. Life-Basel, 9(4): E79. https://doi.org/10.3390/life9040079
      Shen, J. X., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Mars Analogs: Strategical and Technical Assessments. Earth and Planetary Physics, 6: 431-450. https://doi.org/10.26464/epp2022042
      Singh, M., Sarkar, A., 2021. Laser Induced Breakdown Spectroscopic Measurements of Oxygen to Metal (O/M) Ratio in Metal Oxides Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 179: 106106. https://doi.org/10.1016/j.sab.2021.106106
      Sobron, P., Wang, A., Mayer, D. P., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region of Tibet Plateau: Ⅲ. Correlated Multiscale Surface Mineralogy and Geochemistry Survey. Astrobiology, 18(10): 1277-1304. https://doi.org/10.1089/ast.2017.1777
      Sun, Y., Li, Y. L., Zhang, C. Q., et al., 2022. Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Frontiers in Astronomy and Space Sciences, 9: 875547. https://doi.org/10.3389/fspas.2022.875547
      Viviano-Beck, C. E., Seelos, F. P., Murchie, S. L., et al., 2014. Revised Crism Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. Journal of Geophysical Research: Planets, 119(6): 1403-1431. https://doi.org/10.1002/2014je004627
      Wang, J., Wang, Y. J., Liu, Z. C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47. https://doi.org/10.1016/S0031-0182(99)00038-3
      Wang, J., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
      Wu, W. R., Wang, C., Liu, Y., et al., 2023. Frontier Scientific Questions in Deep Space Exploration. Chinese Science Bulletin, 68(6): 606-627 (in Chinese). doi: 10.1360/TB-2022-0667
      Xia, W. C., Zhang, N., Yuan, X. P., et al., 2001. Cenozoic Qaidam Basin, China: A Stronger Tectonic Inversed, Extensional Rifted Basin. AAPG Bulletin, 85(4): 715-736. https://doi.org/https://doi.org/10.1306/8626C98D-173B-11D7-8645000102C1865D
      Xiao, L., Huang, J., Kusky, T., et al., 2023. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review, 10(9): nwad137. https://doi.org/10.1093/nsr/nwad137
      Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84-101. https://doi.org/10.1016/j.earscirev.2016.11.003
      Xu, W. M., Liu, X. F., Yan, Z. X., et al., 2021. The MarSCoDe Instrument Suite on the Mars Rover of China's Tianwen-1 Mission. Space Science Reviews, 217(5): 1-58. https://doi.org/10.1007/s11214-021-00836-5
      Xue, D. S., Su, B. X., Zhang, D. P., et al., 2020. Quantitative Verification of 1 : 100 Diluted Fused Glass Beads for X-Ray Fluorescence Analysis of Geological Specimens. Journal of Analytical Atomic Spectrometry, 35(12): 2826-2833. https://doi.org/10.1039/d0ja00273a
      Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846. https://doi.org/10.1130/b26180.1
      Yong, C. Z., Fang, Z. Y., Zhang, C. C., et al., 2023. Constraints on Water Activity at the Zhurong Landing Site in Utopia Planitia, Mars. Earth and Planetary Physics, 7(3): 356-370. https://doi.org/10.26464/epp2023036
      Zhao, Y. S., Yu, J., Wei, G. F., et al., 2023. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056
      黄麒, 韩凤清, 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.
      李露露, 董治宝, 李超, 等, 2018. 火星和地球雅丹形态学类比分析——以埃律西昂平原和柴达木盆地为例. 中国沙漠, 38(4): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201804005.htm
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm
      林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
      吴伟仁, 王赤, 刘洋, 等, 2023. 深空探测之前沿科学问题探析. 科学通报, 68(6): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202306005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (403) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return