Citation: | Shi Xiusong, Liu Susu, Lu Zhao, Liu Leilei, Zhang Fuhai, 2025. Effect of Grading and Water Content on Thermal Conductivity of Natural Peat Aggregated Soils. Earth Science, 50(4): 1612-1624. doi: 10.3799/dqkx.2024.032 |
Basiri Parsa, S., Maleki, M., 2023. Factors Affecting Small-Strain Shear Modulus of Sand-Silt Mixture Considering Different Moisture Contents. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(1): 479-490. https://doi.org/10.1007/s40996-022-01018-1
|
Bian, X., Ren, Z. L., Zeng, L. L., et al., 2024. Effects of Biochar on the Compressibility of Soil with High Water Content. Journal of Cleaner Production, 434: 140032. https://doi.org/10.1016/j.jclepro.2023.140032
|
Cai, G. Q., Wu, T. C., Wang, Y. N., et al., 2020. Model of the Microstructure Evolution of Unsaturated Compacted Soils with Double-Pore Structure. Rock and Soil Mechanics, 41(11): 3583-3590(in Chinese with English abstract).
|
Carminati, A., Kaestner, A., Lehmann, P., et al., 2008. Unsaturated Water Flow across Soil Aggregate Contacts. Advances in Water Resources, 31(9): 1221-1232. https://doi.org/10.1016/j.advwatres.2008.01.008
|
Che, L. N., Zhang, H. H., Wan, L. H., 2023. Spatial Distribution of Permafrost Degradation and Its Impact on Vegetation Phenology from 2000 to 2020. Science of the Total Environment, 877: 162889. https://doi.org/10.1016/j.scitotenv.2023.162889
|
Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Scientia Sinica (Terrae), 51(1): 15-26(in Chinese).
|
Chen, S. X., 2008. Thermal Conductivity of Sands. Heat and Mass Transfer, 44(10): 1241-1246. https://doi.org/10.1007/s00231-007-0357-1
|
Cheng, G. D., He, P., 2001. Linearity Engineering in Permafrost Areas. Journal of Glaciolgy and Geocryology, 23(3): 213-217(in Chinese with English abstract).
|
Chu, Z. X., Zhou, G. Q., Rao, Z. H., et al., 2020. Predicting Correlation and Evolution Mechanisms of the Effective Thermal Conductivity of Granular Geomaterials. Chinese Journal of Rock Mechanics and Engineering, 39(2): 384-397(in Chinese with English abstract).
|
Côté, J., Konrad, J. M., 2005. A Generalized Thermal Conductivity Model for Soils and Construction Materials. Canadian Geotechnical Journal, 42(2): 443-458. https://doi.org/10.1139/t04-106
|
Ding, Y. J., Mu, C. C., Wu, T. H., et al., 2021. Increasing Cryospheric Hazards in a Warming Climate. Earth-Science Reviews, 213: 103500. https://doi.org/10.1016/j.earscirev.2020.103500
|
Gui, Y., Xie, Z. P., Gao, Y. F., 2023. Influence and Mechanism of Organic Matter on Thermal Conductivity of Cohesive Soil. Rock and Soil Mechanics, 44(S1): 154-162(in Chinese with English abstract).
|
He, H., He, Y., Cai, G. J., et al., 2022. Influence of Particle Size and Packing on the Thermal Conductivity of Carbonate Sand. Granular Matter, 24(4): 117. https://doi.org/10.1007/s10035-022-01277
|
Lee, C., Suh, H. S., Yoon, B., et al., 2017. Particle Shape Effect on Thermal Conductivity and Shear Wave Velocity in Sands. Acta Geotechnica, 12(3): 615-625. https://doi.org/10.1007/s11440-017-0524-6
|
Leng, Y. F., 2011. Experimental Study on Physical and Mechanical Properties and Numerical Analysis of Temperature Field of Permafrost in Sino-Russian Oil Pipeline(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
|
Lin, J. Z., Shi, X. S., Zeng, Y. W., et al., 2023. Estimating the Thermal Conductivity of Granular Soils Based on a Simplified Homogenization Method. Cold Regions Science and Technology, 211: 103855. https://doi.org/10.1016/j.coldregions.2023.103855
|
Liu, G. M., Zhang, B., Wang, L., et al., 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698(in Chinese with English abstract).
|
Liu, Y. L., Wang, P., Wang, J. K., 2023. Formation and Stability Mechanism of Soil Aggregates: Progress and Prospect. Acta Pedologica Sinica, 60(3): 627-643(in Chinese with English abstract).
|
Lu, N., Dong, Y., 2015. Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature. Journal of Geotechnical and Geoenvironmental Engineering, 141(6): 04015016. https://doi.org/10.1061/(asce)gt.1943-5606.0001295
|
Luo, D. L., Liu, J., Chen, F. F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081(in Chinese with English abstract).
|
Mustamo, P., Ronkanen, A. K., Berglund, Ö., et al., 2019. Thermal Conductivity of Unfrozen and Partially Frozen Managed Peat Soils. Soil and Tillage Research, 191: 245-255. https://doi.org/10.1016/j.still.2019.02.017
|
Nan, B. W., 2019. Experimental Study on the Influence of Particle Gradation and Shape and Thermal Characteristics of Particles on Thermal Conductivity of Soil (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
|
Nan F. S., Li Z. X., Zhang X. P., et al., 2023. Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou. Earth Science, 48(3): 1195-1204(in Chinese with English abstract).
|
Peth, S., Nellesen, J., Fischer, G., et al., 2010. Non-Invasive 3D Analysis of Local Soil Deformation under Mechanical and Hydraulic Stresses by μCT and Digital Image Correlation. Soil and Tillage Research, 111(1): 3-18. https://doi.org/10.1016/j.still.2010.02.007
|
Qin, C., Zhou, J., 2023. On the Seismic Stability of Soil Slopes Containing Dual Weak Layers: True Failure Load Assessment by Finite-Element Limit-Analysis. Acta Geotechnica, 18(6): 3153-3175. https://doi.org/10.1007/s11440-022-01730-2
|
Schweizer, S. A., Bucka, F. B., Graf-Rosenfellner, M., et al., 2019. Soil Microaggregate Size Composition and Organic Matter Distribution as Affected by Clay Content. Geoderma, 355: 113901. https://doi.org/10.1016/j.geoderma.2019.113901
|
Shi, X. S., Herle, I., Muir Wood, D., 2018. A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique, 68(3): 189-204. https://doi.org/10.1680/jgeot.16.p.054
|
Shi, X. S., Nie, J. Y., Zhao, J. D., et al., 2020. A Homogenization Equation for the Small Strain Stiffness of Gap-Graded Granular Materials. Computers and Geotechnics, 121: 103440. https://doi.org/10.1016/j.compgeo.2020.103440
|
Shi, X. S., Zhao, J. D., 2020. Practical Estimation of Compression Behavior of Clayey/Silty Sands Using Equivalent Void-Ratio Concept. Journal of Geotechnical and Geoenvironmental Engineering, 146(6): 04020046. https://doi.org/10.1061/(asce)gt.1943-5606.0002267
|
Shi, X. S., Zhao, J. D., Gao, Y. F., 2021. A Homogenization-Based State-Dependent Model for Gap-Graded Granular Materials with Fine-Dominated Structure. International Journal for Numerical and Analytical Methods in Geomechanics, 45(8): 1007-1028. https://doi.org/10.1002/nag.3189
|
Shi, Y., Jia, X. L., Lü, G. E., et al., 2023. Determination of Maximum and Minimum Void Ratios of Calcareous Sand Considering Various Influence Factors. Journal of Ground Improvement, 5(4): 293-298(in Chinese with English abstract).
|
Tan, W. F., Xu, Y., Shi, Z. H., et al., 2023. The Formation Process and Stabilization Mechanism of Soil Aggregates Driven by Binding Materials. Acta Pedologica Sinica, 60(5): 1297-1308(in Chinese with English abstract).
|
Tang, P. P., Xu, J., Lu, Y. H., 2019. Experimental Study on Effects of Water Content and Temperature on Thermal Conductivity of Unsaturated Soils. Journal of Disaster Prevention and Mitigation Engineering, 39(4): 678-683(in Chinese with English abstract).
|
Usowicz, B., Lipiec, J., Usowicz, J. B., et al., 2013. Effects of Aggregate Size on Soil Thermal Conductivity: Comparison of Measured and Model-Predicted Data. International Journal of Heat and Mass Transfer, 57(2): 536-541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067
|
Wang, T., Wang, X. Y., Liu, D., et al., 2023. The Current and Future of Terrestrial Carbon Balance over the Tibetan Plateau. Scientia Sinica (Terrae), 53(7): 1506-1516(in Chinese).
|
Wu, Q. B., Zhang, Z. Q., Gao, S. R., et al., 2016. Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai–Tibet Plateau, China. The Cryosphere, 10(4): 1695-1706. https://doi.org/10.5194/tc-10-1695-2016
|
Wu, Q., Chen, G. X., Zhou, Z. L., et al., 2018. Experimental Investigation on Liquefaction Resistance of Fine-Coarse-Grained Soil Mixtures Based on Theory of Intergrain Contact State. Chinese Journal of Geotechnical Engineering, 40(3): 475-485(in Chinese with English abstract).
|
Xiao, Y., Liu, H. L., Nan, B. W., et al., 2018. Gradation-Dependent Thermal Conductivity of Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(9): 06018010. https://doi.org/10.1061/(asce)gt.1943-5606.0001943
|
Xu, X. T., Zhang, W. D., Fan, C. X., et al., 2020. Effects of Temperature, Dry Density and Water Content on the Thermal Conductivity of Genhe Silty Clay. Results in Physics, 16: 102830. https://doi.org/10.1016/j.rinp.2019.102830
|
Xu, Y. S., Zhou, X. Y., Sun, D. A., et al., 2022. Thermal Properties of GMZ Bentonite Pellet Mixtures Subjected to Different Temperatures for High-Level Radioactive Waste Repository. Acta Geotechnica, 17(3): 981-992. https://doi.org/10.1007/s11440-021-01244-3
|
Yang, Y. L., Zhang, T., Reddy, K. R., et al., 2022. Thermal Conductivity of Scrap Tire Rubber-Sand Composite as Insulating Material: Experimental Investigation and Predictive Modeling. Construction and Building Materials, 332: 127387. https://doi.org/10.1016/j.conbuildmat.2022.127387
|
Yang, Z. W., 2018. Experimental Study on Thermal Conductivity of Typical Soils in Northeastern Inner Mongolia during Freezing/Thawing Process (Dissertation). Inner Mongolia University, Hohhot (in Chinese with English abstract).
|
Zhang, X. R., Kong, G. Q., Wang, L. H., et al., 2020. Measurement and Prediction on Thermal Conductivity of Fused Quartz. Scientific Reports, 10(1): 6559. https://doi.org/10.1038/s41598-020-62299-y
|
蔡国庆, 吴天驰, 王亚南, 等, 2020. 双孔结构非饱和压实土微观结构演化模型. 岩土力学, 41(11): 3583-3590.
|
陈槐, 吴宁, 王艳芬, 等, 2021. 泥炭沼泽湿地研究的若干基本问题与研究简史. 中国科学: 地球科学, 51(1): 15-26.
|
程国栋, 何平, 2001. 多年冻土地区线性工程建设. 冰川冻土, 23(3): 213-217.
|
褚召祥, 周国庆, 饶中浩, 等, 2020. 颗粒岩土介质热导率预测关联式及其演化机制. 岩石力学与工程学报, 39(2): 384-397.
|
桂跃, 谢正鹏, 高玉峰, 2023. 有机质对黏性土热传导系数的影响与机制. 岩土力学, 44(增刊1): 154-162.
|
冷毅飞, 2011. 中俄石油管道多年冻土物理力学性质试验研究及温度场数值分析(硕士学位论文). 长春: 吉林大学.
|
刘桂民, 张博, 王莉, 等, 2023. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 48(12): 4689-4698.
|
刘亚龙, 王萍, 汪景宽, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 60(3): 627-643.
|
罗栋梁, 刘佳, 陈方方, 等, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081.
|
南博文, 2019. 颗粒级配和形状及颗粒热特性对土体导热系数影响的试验研究(硕士学位论文). 重庆: 重庆大学.
|
南富森, 李宗省, 张小平, 等, 2023. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 48(3): 1195-1204.
|
施勇, 贾献林, 吕国儿, 等, 2023. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理, 5(4): 293-298.
|
谭文峰, 许运, 史志华, 等, 2023. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 60(5): 1297-1308.
|
唐盼盼, 徐洁, 卢永洪, 2019. 含水率及温度影响非饱和土导热系数的试验研究. 防灾减灾工程学报, 39(4): 678-683.
|
汪涛, 王晓昳, 刘丹, 等, 2023. 青藏高原碳汇现状及其未来趋势. 中国科学: 地球科学, 53(7): 1506-1516.
|
吴琪, 陈国兴, 周正龙, 等, 2018. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究. 岩土工程学报, 40(3): 475-485.
|
杨宗维, 2018. 冻/融过程中内蒙古东北部典型土体导热系数的试验研究(硕士学位论文). 呼和浩特: 内蒙古大学.
|