Citation: | Xiao Ting, Liu Qingli, Deng Min, Liu Xiaodong, 2025. Evolution Patterns of Landslide Susceptibility in Three Gorges Reservoir Areas. Earth Science, 50(4): 1625-1637. doi: 10.3799/dqkx.2024.038 |
Bradley, A. P., 1997. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7): 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
|
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5–32. https://doi.org/10.1023/A: 1010933404324 doi: 10.1023/A:1010933404324
|
Chen, J., Li, X., Yang, Z. F., 2005. On the Distribution and Mechanism of Landslides in the Three Gorges Reservoir Area. Journal of Engineering Geology, 13(3): 305-309(in Chinese with English abstract).
|
Chen, T. Q., Guestrin, C., Chen, T. Q., et al., 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 - 17, 2016, San Francisco, California, USA. ACM: 785-794.
|
Chen, W., Pourghasemi, H. R., Panahi, M., et al., 2017. Spatial Prediction of Landslide Susceptibility Using an Adaptive Neuro-Fuzzy Inference System Combined with Frequency Ratio, Generalized Additive Model, and Support Vector Machine Techniques. Geomorphology, 297: 69-85. https://doi.org/10.1016/j.geomorph.2017.09.007
|
Cheng, J. Y., Dai, X. A., Wang, Z. K., et al., 2022. Landslide Susceptibility Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China. Remote Sensing, 14(9): 2257. https://doi.org/10.3390/rs14092257
|
Choi, J., Oh, H. J., Lee, H. J., et al., 2012. Combining Landslide Susceptibility Maps Obtained from Frequency Ratio, Logistic Regression, and Artificial Neural Network Models Using ASTER Images and GIS. Engineering Geology, 124: 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011
|
Deng, M., Cai, J. N., Yang, W. T., et al., 2020. Spatio-Temporal Analysis Methods for Multi-Modal Geographic Big Data. Journal of Geo-Information Science, 22(1): 41-56(in Chinese with English abstract).
|
Hu, Q., Zhou, Y., Wang, S. X., et al., 2020. Machine Learning and Fractal Theory Models for Landslide Susceptibility Mapping: Case Study from the Jinsha River Basin. Geomorphology, 351: 106975. https://doi.org/10.1016/j.geomorph.2019.106975
|
Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710(in Chinese with English abstract).
|
Huang, F. M., Yin, K. L., Huang, J. S., et al., 2017. Landslide Susceptibility Mapping Based on Self-Organizing-Map Network and Extreme Learning Machine. Engineering Geology, 223: 11-22. https://doi.org/10.1016/j.enggeo.2017.04.013
|
Jones, J. N., Boulton, S. J., Bennett, G. L., et al., 2021. Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling. Journal of Geophysical Research: Earth Surface, 126(7): e2021JF006067. https://doi.org/10.1029/2021JF006067
|
Khanna, K., Martha, T. R., Roy, P., et al., 2021. Effect of Time and Space Partitioning Strategies of Samples on Regional Landslide Susceptibility Modelling. Landslides, 18(6): 2281-2294. https://doi.org/10.1007/s10346-021-01627-3
|
Lefever, D. W., 1926. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. American Journal of Sociology, 32(1): 88-94. https://doi.org/10.1086/214027
|
Li, K. F., Zhu, C., Wu, L., et al., 2013. Problems Caused by the Three Gorges Dam Construction in the Yangtze River Basin: A Review. Environmental Reviews, 21(3): 127-135. https://doi.org/10.1139/er-2012-0051
|
Lin, Q. G., Wang, Y., 2018. Spatial and Temporal Analysis of a Fatal Landslide Inventory in China from 1950 to 2016. Landslides, 15(12): 2357-2372. https://doi.org/10.1007/s10346-018-1037-6
|
Loche, M., Alvioli, M., Marchesini, I., et al., 2022. Landslide Susceptibility Maps of Italy: Lesson Learnt from Dealing with Multiple Landslide Types and the Uneven Spatial Distribution of the National Inventory. Earth-Science Reviews, 232: 104125. https://doi.org/10.1016/j.earscirev.2022.104125
|
Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225
|
Miao, F. S., Ruan, Q. Y., Wu, Y. P., et al., 2023a. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sensing, 15(22): 5427. https://doi.org/10.3390/rs15225427
|
Miao, F. S., Zhao, F. C., Wu, Y. P., et al., 2023b. Landslide Susceptibility Mapping in Three Gorges Reservoir Area Based on GIS and Boosting Decision Tree Model. Stochastic Environmental Research and Risk Assessment, 37(6): 2283-2303. https://doi.org/10.1007/s00477-023-02394-4
|
Ozturk, U., Pittore, M., Behling, R., et al., 2021. How Robust are Landslide Susceptibility Estimates? Landslides, 18(2): 681-695. https://doi.org/10.1007/s10346-020-01485-5
|
Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
|
Samia, J., Temme, A., Bregt, A., et al., 2017. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides, 14(2): 547-558. https://doi.org/10.1007/s10346-016-0739-x
|
Tien Bui, D., Pradhan, B., Lofman, O., et al., 2012. Landslide Susceptibility Mapping at Hoa Binh Province (Vietnam) Using an Adaptive Neuro-Fuzzy Inference System and GIS. Computers & Geosciences, 45: 199-211. https://doi.org/10.1016/j.cageo.2011.10.031
|
Torizin, J., Wang, L. C., Fuchs, M., et al., 2018. Statistical Landslide Susceptibility Assessment in a Dynamic Environment: A Case Study for Lanzhou City, Gansu Province, NW China. Journal of Mountain Science, 15(6): 1299-1318. https://doi.org/10.1007/s11629-017-4717-0
|
Vakhshoori, V., Zare, M., 2018. Is the ROC Curve a Reliable Tool to Compare the Validity of Landslide Susceptibility Maps? Geomatics, Natural Hazards and Risk, 9(1): 249-266. https://doi.org/10.1080/19475705.2018.1424043
|
Wang, J. J., Yin, K. L., Xiao, L. L., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808(in Chinese with English abstract).
|
Wang, Y. M., Feng, L. W., Li, S. J., et al., 2020. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China. CATENA, 188: 104425. https://doi.org/10.1016/j.catena.2019.104425
|
Wu, S. R., Shi, J. S., Zhang, Y. S., et al., 2006. Landslide Mechanisms: A Case Study of the Yangtze Three Gorges Reservoir Area. Geological Bulletin of China, 25(7): 874-879(in Chinese with English abstract).
|
Xiao, T., 2020. Risk Assessment of Landslide Disaster in Wanzhou District and Bank Section of Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Xiao, T., Yu, L. B., Tian, W. M., et al., 2021. Reducing Local Correlations among Causal Factor Classifications as a Strategy to Improve Landslide Susceptibility Mapping. Frontiers in Earth Science, 9: 781674. https://doi.org/10.3389/feart.2021.781674
|
Yin, Y. P., 2004. Research Progress of Major Geological Disasters and Their Prevention in the Three Gorges Reservoir Area. Geotechnical Engineering Community, (8): 20-26(in Chinese).
|
Yuan, W. H., Yin, D. W., Finlayson, B., et al., 2012. Assessing the Potential for Change in the Middle Yangtze River Channel Following Impoundment of the Three Gorges Dam. Geomorphology, 147: 27-34. https://doi.org/10.1016/j.geomorph.2011.06.039
|
Zeng, T. R., Wu, L. Y., Peduto, D., et al., 2023. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geoscience Frontiers, 14(6): 101645. https://doi.org/10.1016/j.gsf.2023.101645
|
Zhang, H. J., Song, Y. X., Xu, S. L., et al., 2022. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158: 104966. https://doi.org/10.1016/j.cageo.2021.104966
|
Zhao, Y. F., Wu, Q. R., Wei, P. P., et al., 2022. Explore the Mitigation Mechanism of Urban Thermal Environment by Integrating Geographic Detector and Standard Deviation Ellipse (SDE). Remote Sensing, 14(14): 3411. https://doi.org/10.3390/rs14143411
|
陈剑, 李晓, 杨志法, 2005. 三峡库区滑坡的时空分布特征与成因探讨. 工程地质学报, 13(3): 305-309.
|
邓敏, 蔡建南, 杨文涛, 等, 2020. 多模态地理大数据时空分析方法. 地球信息科学学报, 22(1): 41-56.
|
黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710.
|
王佳佳, 殷坤龙, 肖莉丽, 2014. 基于GIS和信息量的滑坡灾害易发性评价: 以三峡库区万州区为例. 岩石力学与工程学报, 33(4): 797-808.
|
吴树仁, 石菊松, 张永双, 等, 2006. 滑坡宏观机理研究: 以长江三峡库区为例. 地质通报, 25(7): 874-879.
|
肖婷, 2020. 三峡库区万州区及重点库岸段滑坡灾害风险评价(博士学位论文). 武汉: 中国地质大学.
|
殷跃平, 2004. 三峡库区重大地质灾害及防治研究进展. 岩土工程界, (8): 20-26.
|