• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Yuan Hao, Guo Changbao, Wu Ruian, Yan Mingqi, Zhong Ning, 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040
    Citation: Yuan Hao, Guo Changbao, Wu Ruian, Yan Mingqi, Zhong Ning, 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040

    Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China

    doi: 10.3799/dqkx.2024.040
    • Received Date: 2023-12-04
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • High-altitude and long-runout landslides exhibit typical characteristics including slip initiation at high altitudes, rapid sliding speeds, and intense dynamic shearing. These landslides exhibit differences in their long runout mechanisms due to variations in saturation characteristics of loose layers along their sliding path during high-speed sliding. This study examines the Luanshibao landslide in Litang County, Sichuan Province, which has a runout zone composed of saturated deposit. After a comprehensive investigation and analysis of the landslide characteristics, it conducted high-speed undrained ring shear tests at various normal stress levels of 200 kPa, 400 kPa, and 600 kPa using an ICL-2 high-speed ring shear apparatus. The test shearing speed was maintained at 50 cm/s, with a shearing distance of 300 m. The experimental findings indicate that the formation of the sliding zone can be divided into four stages: initial dilation, dilation-negative dilation, unreal dilation, and compression drainage. The pore water pressure increases nonlinearly and has a positive correlation with the normal displacement. When the shear distance reaches 100 m, the pore water pressure increases to more than 50% of the total normal stress. Sliding zone liquefaction caused by particle breakage is the main reason for the reduction in shear strength, leading to shear strength decreases by more than 50% and the pore water pressure increases to more than 70% of the total normal stress. The formation process of the Luanshibao landslide can be summarized as follows: seismic activity triggered high-speed sliding initiation, landslide body fragmentation formed a debris flow, sliding zone liquefaction facilitated long runout movement, and debris flow slowed and accumulated. The research findings could provide a reference for the analysis of the mechanisms of high-altitude and long-runout landslides with water saturated loose layers in their movement paths.

       

    • loading
    • Agung, M. W., Sassa, K., Fukuoka, H., et al., 2004. Evolution of Shear-Zone Structure in Undrained Ring-Shear Tests. Landslides, 1(2): 101-112. https://doi.org/10.1007/s10346-004-0001-9
      Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).
      Cui, S. H., Pei, X. J., Jiang, Y., et al., 2021. Liquefaction within a Bedding Fault: Understanding the Initiation and Movement of the Daguangbao Landslide Triggered by the 2008 Wenchuan Earthquake (Ms = 8.0). Engineering Geology, 295: 106455. https://doi.org/10.1016/j.enggeo.2021.106455
      Dai, Z. L., Wang, F. W., Cheng, Q. G., et al., 2019. A Giant Historical Landslide on the Eastern Margin of the Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 78(3): 2055-2068. https://doi.org/10.1007/s10064-017-1226-x
      Fukuoka, H., Sassa, K., Wang, G. H., et al., 2006. Observation of Shear Zone Development in Ring-Shear Apparatus with a Transparent Shear Box. Landslides, 3(3): 239-251. https://doi.org/10.1007/s10346-006-0043-2
      Guo, C. B., Montgomery, D. R., Zhang, Y. S., et al., 2020. Evidence for Repeated Failure of the Giant Yigong Landslide on the Edge of the Tibetan Plateau. Scientific Reports, 10: 14371. https://doi.org/10.1038/s41598-020-71335-w
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700 (in Chinese with English abstract).
      Guo, C. B., Zhang, Y. S., Montgomery, D. R., et al., 2016. How Unusual is the Long-Runout of the Earthquake-Triggered Giant Luanshibao Landslide, Tibetan Plateau, China? Geomorphology, 259: 145-154. https://doi.org/10.1016/j.geomorph.2016.02.013
      Guo, C. B., Zhang, Y. S., Zhang, Y. N., et al., 2023. Freeze-Thaw Cycle Effects on Granite and the Formation Mechanism of Long-Runout Landslides: Insights from the Luanshibao Case Study in the Tibetan Plateau, China. Bulletin of Engineering Geology and the Environment, 82(10): 394. https://doi.org/10.1007/s10064-023-03427-6
      Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/bf01246865
      Hu, M. J., Wang, F. W., Cheng, Q. G., 2009. Formation of Tremendous Yigong Landslide Based on High-Speed Shear Tests. Chinese Journal of Geotechnical Engineering, 31(10): 1602-1606 (in Chinese with English abstract).
      Hu, W., Chang, C. S., McSaveney, M., et al., 2020. A Weakening Rheology of Dry Granular Flows with Extensive Brittle Grain Damage in High-Speed Rotary Shear Experiments. Geophysical Research Letters, 47(11): e2020GL087763. https://doi.org/10.1029/2020gl087763
      Marsal, R. J., 1967. Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division, 93(2): 27-43. https://doi.org/10.1061/jsfeaq.0000958
      Plafker, G., Ericksen, G. E., 1978. Nevados Huascarán Avalanches, Peru. Developments in Geotechnical Engineering. Elsevier, Amsterdam, 277-314. https://doi.org/10.1016/b978-0-444-41507-3.50016-7
      Sassa, K., Dang, K., He, B., et al., 2014. A New High-Stress Undrained Ring-Shear Apparatus and Its Application to the 1792 Unzen-Mayuyama Megaslide in Japan. Landslides, 11(5): 827-842. https://doi.org/10.1007/s10346-014-0501-1
      Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G., et al., 1996. Earthquake-Induced-Landslides: Distribution, Motion and Mechanisms. Soils and Foundations, 36: 53-64. https://doi.org/10.3208/sandf.36.Special_53
      Siman-Tov, S., Brodsky, E. E., 2018. Gravity-Independent Grain Size Segregation in Experimental Granular Shear Flows as a Mechanism of Layer Formation. Geophysical Research Letters, 45(16): 8136-8144. https://doi.org/10.1029/2018gl078486
      Timothy, R. H. D., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/bf01239474
      Timothy, R. H. D., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067
      Wang, F. W., Sassa, K., 2007. Initiation and Traveling Mechanisms of the May 2004 Landslide-Debris Flow at Bettou-Dani of the Jinnosuke-Dani Landslide, Haku-San Mountain, Japan. Soils and Foundations, 47(1): 141-152. https://doi.org/10.3208/sandf.47.141
      Wang, F. W., 2019. Liquefactions Caused by Structure Collapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes. Journal of Engineering Geology, 27(1): 98-107 (in Chinese with English abstract).
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., Arbanas, Ž., Cuomo, S., et al., eds., Progress in Landslide Research and Technology. Springer, Switzerland, 55-111. https://doi.org/10.1007/978-3-031-44296-4_2
      Wu, R. A., Zhang, Y. S., Guo, C. B., et al., 2018. Characteristics and Formation Mechanisms of the Lagangcun Giant Ancient Landslide in Jiacha, Tibet. Acta Geologica Sinica, 92(6): 1324-1334(in Chinese with English abstract).
      Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2005. Average Slip Rate, Earthquake Rupturing Segmentation and Recurrence Behavior on the Litang Fault Zone, Western Sichuan Province, China. Science in China: Earth Sciences, 48(8): 1183-1196. https://doi.org/10.1360/04yd0072
      Yan, Y. Q., Guo, C. B., Zhong, N., et al., 2022. Deformation Characteristics of Jiaju Ancient Landslide Based on InSAR Monitoring Method, Sichuan, China. Earth Science, 47(12): 4681-4697(in Chinese with English abstract).
      Yin, Y. P., 2000. Characteristics and Disaster Mitigation Research on the Giant Landslide in Bomi, Yigong, Xizang. Hydrogeology & Engineering Geology, 44(4): 8-11 (in Chinese with English abstract).
      Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. https://doi.org/10.1016/j.jrmge.2022.11.001
      Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841(in Chinese with English abstract).
      Zeng, Q. L., Yuan, G. X., Davies, T., et al., 2020. 10Be Dating and Seismic Origin of Luanshibao Rock Avalanche in SE Tibetan Plateau and Implications on Litang Active Fault. Landslides, 17(5): 1091-1104. https://doi.org/10.1007/s10346-019-01319-z
      Zeng, Q. L., Wei, R. Q., McSaveney, M., et al., 2021. From Surface Morphologies to Inner Structures: Insights into Hypermobility of the Nixu Rock Avalanche, Southern Tibet, China. Landslides, 18(1): 125-143. https://doi.org/10.1007/s10346-020-01503-6
      Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817(in Chinese with English abstract).
      Zhu, L., Cui, S. H., Pei, X. J., et al., 2022. Investigation of the Characteristics and Long-Runout Movement Mechanisms of the Luanshibao Landslide on the Eastern Margin of the Qinghai-Tibet Plateau. Soil Dynamics and Earthquake Engineering, 153: 107094. https://doi.org/10.1016/j.soildyn.2021.107094
      程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84.
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700.
      胡明鉴, 汪发武, 程谦恭, 2009. 基于高速环剪试验易贡巨型滑坡形成原因试验探索. 岩土工程学报, 31(10): 1602-1606.
      汪发武, 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理. 工程地质学报, 27(1): 98-107.
      吴瑞安, 张永双, 郭长宝, 等, 2018. 西藏加查拉岗村巨型古滑坡发育特征与形成机理研究. 地质学报, 92(6): 1324-1334.
      闫怡秋, 郭长宝, 钟宁, 等, 2022. 基于InSAR形变监测的四川甲居古滑坡变形特征. 地球科学, 47(12): 4681-4697.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841.
      张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (295) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return