Citation: | Xiong Jing, Sun Ziyong, Hu Yalu, Ma Rui, 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043 |
Bianchi, T. S., Wysocki, L. A., Schreiner, K. M., et al., 2011. Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 17(4): 431-456. https://doi.org/10.1007/s10498-010-9110-3
|
Campbell, T. P., Ulrich, D. E. M., Toyoda, J., et al., 2022. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Frontiers in Microbiology, 12: 799014. https://doi.org/10.3389/fmicb.2021.799014
|
Chaudhary, N., Miller, P. A., Smith, B., 2017. Modelling Past, Present and Future Peatland Carbon Accumulation across the Pan-Arctic Region. Biogeosciences, 14(18): 4023-4044. https://doi.org/10.5194/bg-14-4023-2017
|
Chen, M. L., Hur, J., Gu, J. D., et al., 2023. Microbial Degradation of Various Types of Dissolved Organic Matter in Aquatic Ecosystems and Its Influencing Factors. Science China Earth Sciences, 66(2): 169-189. https://doi.org/10.1007/s11430-021-9996-1
|
Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
|
Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2
|
Ding, Y. J., Ye, B. S., Liu, S. Y., 2000. Impact of Climate Change on the Alpine Streamflow during the Past 40 a in the Middle Part of the Qilian Mountains, Northwestern China. Journal of Glaciolgy and Geocryology, 22(3): 193-199 (in Chinese with English abstract).
|
Garten, C. T., Hanson, P. J., 2006. Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136(1-2): 342-352. https://doi.org/10.1016/j.geoderma.2006.03.049
|
Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426
|
Lim, A. G., Loiko, S. V., Pokrovsky, O. S., 2022. Sizable Pool of Labile Organic Carbon in Peat and Mineral Soils of Permafrost Peatlands, Western Siberia. Geoderma, 409: 115601. https://doi.org/10.1016/j.geoderma.2021.115601
|
Liu, F. T., Kou, D., Abbott, B. W., et al., 2019. Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrost-Derived Dissolved Organic Carbon. Journal of Geophysical Research: Biogeosciences, 124(11): 3377-3389. https://doi.org/10.1029/2018jg004944
|
Logozzo, L. A., Hosen, J. D., McArthur, J., et al., 2023. Distinct Drivers of Two Size Fractions of Operationally Dissolved Iron in a Temperate River. Limnology and Oceanography, 68(6): 1185-1200. https://doi.org/10.1002/lno.12338
|
Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689
|
Marcé, R., Verdura, L., Leung, N., 2021. Dissolved Organic Matter Spectroscopy Reveals a Hot Spot of Organic Matter Changes at the River-Reservoir Boundary. Aquatic Sciences, 83(4): 67. https://doi.org/10.1007/s00027-021-00823-6
|
Marshall, L. P., Kaufman, D. S., Anderson, R. S., et al., 2023. Organic‐Matter Accumulation and Degradation in Holocene Permafrost Deposits along a Central Alaska Hillslope. Journal of Geophysical Research: Biogeosciences, 128(9): 007290. https://doi.org/10.1007/s00027-021-00823-6
|
Moyano, F. E., Manzoni, S., Chenu, C., 2013. Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models. Soil Biology and Biochemistry, 59: 72-85. https://doi.org/10.1016/j.soilbio.2013.01.002
|
Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9(2): 479-486. doi: 10.5194/tc-9-479-2015
|
Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2014. Stable Carbon Isotopes as Indicators for Permafrost Carbon Vulnerability in Upper Reach of Heihe River Basin, Northwestern China. Quaternary International, 321: 71-77. https://doi.org/10.1016/j.quaint.2013.12.001
|
Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071
|
Murphy, K. R., Stedmon, C. A., Graeber, D., et al., 2013. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Analytical Methods, 5(23): 6557-6566. https://doi.org/10.1039/C3AY41160E
|
Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123
|
Olefeldt, D., Persson, A., Turetsky, M. R., 2014. Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9(3): 035005. https://doi.org/10.1088/1748-9326/9/3/035005
|
Öquist, M. G., Bishop, K., Grelle, A., et al., 2014. The Full Annual Carbon Balance of Boreal Forests is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1(7): 315-319. https://doi.org/10.1021/ez500169j
|
Osburn, C. L., Mikan, M. P., Etheridge, J. R., et al., 2015. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged between a Salt Marsh and Its Adjacent Estuary. Journal of Geophysical Research: Biogeosciences, 120(7): 1430-1449. https://doi.org/10.1002/2014jg002897
|
Payandi-Rolland, D., Shirokova, L. S., Nakhle, P., et al., 2020. Aerobic Release and Biodegradation of Dissolved Organic Matter from Frozen Peat: Effects of Temperature and Heterotrophic Bacteria. Chemical Geology, 536: 119448. https://doi.org/10.1016/j.chemgeo.2019.119448
|
Selvam, B. P., Laudon, H., Guillemette, F., et al., 2016. Influence of Soil Frost on the Character and Degradability of Dissolved Organic Carbon in Boreal Forest Soils. Journal of Geophysical Research: Biogeosciences, 121(3): 829-840. https://doi.org/10.1002/2015jg003228
|
Stedmon, C. A., Seredyńska-Sobecka, B., Boe-Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066
|
Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): 413. https://doi.org/10.1029/2005gl024413
|
Sun, Y. Q., Clauson, K., Zhou, M., et al., 2021. Hillslopes in Headwaters of Qinghai-Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing during Permafrost Thaw. Journal of Geophysical Research: Biogeosciences, 126(5): e2020JG006222. https://doi.org/10.1029/2020jg006222
|
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., et al., 2009. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23(2): GB2023. https://doi.org/10.1029/2008GB003327
|
Vonk, J. E., Tank, S. E., Mann, P. J., et al., 2015. Biodegradability of Dissolved Organic Carbon in Permafrost Soils and Aquatic Systems: A Meta-Analysis. Biogeosciences, 12(23): 6915-6930. https://doi.org/10.5194/bg-12-6915-2015
|
Wang, Q. F., Jin, H. J., Wu, Q. B., et al., 2022. The Vertical Distribution of Soil Organic Carbon and Nitrogen in a Permafrost-Affected Wetland on the Qinghai-Tibet Plateau: Implications for Holocene Development and Environmental Change. Permafrost and Periglacial Processes, 33(3): 286-297. https://doi.org/10.1002/ppp.2146
|
Wang, S. R., Zhuang, Q. L., Lähteenoja, O., et al., 2018. Potential Shift from a Carbon Sink to a Source in Amazonian Peatlands under a Changing Climate. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12407-12412. https://doi.org/10.1073/pnas.1801317115
|
Wickland, K. P., Waldrop, M. P., Aiken, G. R., et al., 2018. Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13(6): 065011. https://doi.org/10.1088/1748-9326/aac4ad
|
Yamashita, Y., Maie, N., Brice, H., et al., 2010. Optical Characterization of Dissolved Organic Matter in Tropical Rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research: Biogeosciences, 115(G1): G00F10. https://doi.org/10.1029/2009JG000987
|
Yamashita, Y., Panton, A., Mahaffey, C., et al., 2011. Assessing the Spatial and Temporal Variability of Dissolved Organic Matter in Liverpool Bay Using Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis. Ocean Dynamics, 61(5): 569-579. https://doi.org/10.1007/s10236-010-0365-4
|
Yang, Y., Cheng, S. L., Fang, H. J., et al., 2023. Linkages between the Molecular Composition of Dissolved Organic Matter and Soil Microbial Community in a Boreal Forest during Freeze-Thaw Cycles. Frontiers in Microbiology, 13: 1012512. https://doi.org/10.3389/fmicb.2022.1012512
|
Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., et al., 2018. Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles 32(10): 1605-1620. https://doi.org/10.1029/2018gb005980
|
Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River-Groundwater Interactions in Alpineregions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
|
Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188 (in Chinese with English abstract).
|
丁永建, 叶佰生, 刘时银, 2000. 祁连山中部地区40 a来气候变化及其对径流的影响. 冰川冻土, 22(3): 193-199.
|
张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106.
|
赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
|