• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Xiong Jing, Sun Ziyong, Hu Yalu, Ma Rui, 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043
    Citation: Xiong Jing, Sun Ziyong, Hu Yalu, Ma Rui, 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043

    Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export

    doi: 10.3799/dqkx.2024.043
    • Received Date: 2024-04-22
    • Publish Date: 2024-11-25
    • The soil layers in permafrost regions store a large amount of organic carbon. However, the understanding of the influence of dissolved organic matter (DOM) in permafrost and seasonally frozen ground on the DOM characteristics of riverine output is still unclear due to limited existing studies on the characteristics of soil organic matter in permafrost and seasonally frozen ground and their differences in alpine catchments. To understand the distributions, and controlling mechanisms of dissolved organic matter in the soil of alpine catchments on aquatic DOM, this study collected soil samples of permafrost and seasonally frozen ground in the Hulugou catchment in the northeastern part of the Tibetan plateau and analyzed the soil organic carbon (SOC), dissolved organic carbon (DOC) content, spectral characteristics of DOM, and its biodegradable dissolved organic carbon (BDOC). Then, DOM characteristics in soils were compared with those from different water bodies at different seasons. The study reveals significant differences between permafrost and seasonally frozen soils in terms of dissolved organic carbon (DOC) biodegradability and microbial activity. Permafrost soils have higher soil organic carbon (SOC) but lower DOC, and their dissolved organic matter (DOM) is less humified and aromatic compared to seasonally frozen soils, where biodegradable DOC (BDOC) proportions are higher. The findings indicate that soil hydrological traits in cold mountain areas significantly influence soil organic matter, highlighting soil moisture as a critical factor. In permafrost areas, shallow soil DOM crucially affects river water DOC concentrations and composition. In contrast, seasonal permafrost zone soils have less direct influence on changes in stream DOC concentration and composition, with hydrological conditions shaping DOM's output features in water bodies. This research is crucial for understanding carbon cycling under permafrost degradation in cold mountain regions, condensed into a comprehensive summary within the specified word limit.

       

    • loading
    • Bianchi, T. S., Wysocki, L. A., Schreiner, K. M., et al., 2011. Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 17(4): 431-456. https://doi.org/10.1007/s10498-010-9110-3
      Campbell, T. P., Ulrich, D. E. M., Toyoda, J., et al., 2022. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Frontiers in Microbiology, 12: 799014. https://doi.org/10.3389/fmicb.2021.799014
      Chaudhary, N., Miller, P. A., Smith, B., 2017. Modelling Past, Present and Future Peatland Carbon Accumulation across the Pan-Arctic Region. Biogeosciences, 14(18): 4023-4044. https://doi.org/10.5194/bg-14-4023-2017
      Chen, M. L., Hur, J., Gu, J. D., et al., 2023. Microbial Degradation of Various Types of Dissolved Organic Matter in Aquatic Ecosystems and Its Influencing Factors. Science China Earth Sciences, 66(2): 169-189. https://doi.org/10.1007/s11430-021-9996-1
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2
      Ding, Y. J., Ye, B. S., Liu, S. Y., 2000. Impact of Climate Change on the Alpine Streamflow during the Past 40 a in the Middle Part of the Qilian Mountains, Northwestern China. Journal of Glaciolgy and Geocryology, 22(3): 193-199 (in Chinese with English abstract).
      Garten, C. T., Hanson, P. J., 2006. Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136(1-2): 342-352. https://doi.org/10.1016/j.geoderma.2006.03.049
      Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426
      Lim, A. G., Loiko, S. V., Pokrovsky, O. S., 2022. Sizable Pool of Labile Organic Carbon in Peat and Mineral Soils of Permafrost Peatlands, Western Siberia. Geoderma, 409: 115601. https://doi.org/10.1016/j.geoderma.2021.115601
      Liu, F. T., Kou, D., Abbott, B. W., et al., 2019. Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrost-Derived Dissolved Organic Carbon. Journal of Geophysical Research: Biogeosciences, 124(11): 3377-3389. https://doi.org/10.1029/2018jg004944
      Logozzo, L. A., Hosen, J. D., McArthur, J., et al., 2023. Distinct Drivers of Two Size Fractions of Operationally Dissolved Iron in a Temperate River. Limnology and Oceanography, 68(6): 1185-1200. https://doi.org/10.1002/lno.12338
      Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689
      Marcé, R., Verdura, L., Leung, N., 2021. Dissolved Organic Matter Spectroscopy Reveals a Hot Spot of Organic Matter Changes at the River-Reservoir Boundary. Aquatic Sciences, 83(4): 67. https://doi.org/10.1007/s00027-021-00823-6
      Marshall, L. P., Kaufman, D. S., Anderson, R. S., et al., 2023. Organic‐Matter Accumulation and Degradation in Holocene Permafrost Deposits along a Central Alaska Hillslope. Journal of Geophysical Research: Biogeosciences, 128(9): 007290. https://doi.org/10.1007/s00027-021-00823-6
      Moyano, F. E., Manzoni, S., Chenu, C., 2013. Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models. Soil Biology and Biochemistry, 59: 72-85. https://doi.org/10.1016/j.soilbio.2013.01.002
      Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9(2): 479-486. doi: 10.5194/tc-9-479-2015
      Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2014. Stable Carbon Isotopes as Indicators for Permafrost Carbon Vulnerability in Upper Reach of Heihe River Basin, Northwestern China. Quaternary International, 321: 71-77. https://doi.org/10.1016/j.quaint.2013.12.001
      Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071
      Murphy, K. R., Stedmon, C. A., Graeber, D., et al., 2013. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Analytical Methods, 5(23): 6557-6566. https://doi.org/10.1039/C3AY41160E
      Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123
      Olefeldt, D., Persson, A., Turetsky, M. R., 2014. Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9(3): 035005. https://doi.org/10.1088/1748-9326/9/3/035005
      Öquist, M. G., Bishop, K., Grelle, A., et al., 2014. The Full Annual Carbon Balance of Boreal Forests is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1(7): 315-319. https://doi.org/10.1021/ez500169j
      Osburn, C. L., Mikan, M. P., Etheridge, J. R., et al., 2015. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged between a Salt Marsh and Its Adjacent Estuary. Journal of Geophysical Research: Biogeosciences, 120(7): 1430-1449. https://doi.org/10.1002/2014jg002897
      Payandi-Rolland, D., Shirokova, L. S., Nakhle, P., et al., 2020. Aerobic Release and Biodegradation of Dissolved Organic Matter from Frozen Peat: Effects of Temperature and Heterotrophic Bacteria. Chemical Geology, 536: 119448. https://doi.org/10.1016/j.chemgeo.2019.119448
      Selvam, B. P., Laudon, H., Guillemette, F., et al., 2016. Influence of Soil Frost on the Character and Degradability of Dissolved Organic Carbon in Boreal Forest Soils. Journal of Geophysical Research: Biogeosciences, 121(3): 829-840. https://doi.org/10.1002/2015jg003228
      Stedmon, C. A., Seredyńska-Sobecka, B., Boe-Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066
      Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): 413. https://doi.org/10.1029/2005gl024413
      Sun, Y. Q., Clauson, K., Zhou, M., et al., 2021. Hillslopes in Headwaters of Qinghai-Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing during Permafrost Thaw. Journal of Geophysical Research: Biogeosciences, 126(5): e2020JG006222. https://doi.org/10.1029/2020jg006222
      Tarnocai, C., Canadell, J. G., Schuur, E. A. G., et al., 2009. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23(2): GB2023. https://doi.org/10.1029/2008GB003327
      Vonk, J. E., Tank, S. E., Mann, P. J., et al., 2015. Biodegradability of Dissolved Organic Carbon in Permafrost Soils and Aquatic Systems: A Meta-Analysis. Biogeosciences, 12(23): 6915-6930. https://doi.org/10.5194/bg-12-6915-2015
      Wang, Q. F., Jin, H. J., Wu, Q. B., et al., 2022. The Vertical Distribution of Soil Organic Carbon and Nitrogen in a Permafrost-Affected Wetland on the Qinghai-Tibet Plateau: Implications for Holocene Development and Environmental Change. Permafrost and Periglacial Processes, 33(3): 286-297. https://doi.org/10.1002/ppp.2146
      Wang, S. R., Zhuang, Q. L., Lähteenoja, O., et al., 2018. Potential Shift from a Carbon Sink to a Source in Amazonian Peatlands under a Changing Climate. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12407-12412. https://doi.org/10.1073/pnas.1801317115
      Wickland, K. P., Waldrop, M. P., Aiken, G. R., et al., 2018. Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13(6): 065011. https://doi.org/10.1088/1748-9326/aac4ad
      Yamashita, Y., Maie, N., Brice, H., et al., 2010. Optical Characterization of Dissolved Organic Matter in Tropical Rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research: Biogeosciences, 115(G1): G00F10. https://doi.org/10.1029/2009JG000987
      Yamashita, Y., Panton, A., Mahaffey, C., et al., 2011. Assessing the Spatial and Temporal Variability of Dissolved Organic Matter in Liverpool Bay Using Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis. Ocean Dynamics, 61(5): 569-579. https://doi.org/10.1007/s10236-010-0365-4
      Yang, Y., Cheng, S. L., Fang, H. J., et al., 2023. Linkages between the Molecular Composition of Dissolved Organic Matter and Soil Microbial Community in a Boreal Forest during Freeze-Thaw Cycles. Frontiers in Microbiology, 13: 1012512. https://doi.org/10.3389/fmicb.2022.1012512
      Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., et al., 2018. Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles 32(10): 1605-1620. https://doi.org/10.1029/2018gb005980
      Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River-Groundwater Interactions in Alpineregions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188 (in Chinese with English abstract).
      丁永建, 叶佰生, 刘时银, 2000. 祁连山中部地区40 a来气候变化及其对径流的影响. 冰川冻土, 22(3): 193-199.
      张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (582) PDF downloads(45) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return