• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Song Zhe, Zhang Zizhan, Zheng Shuo, Yan Haoming, Gao Chunchun, 2025. Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage. Earth Science, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046
    Citation: Song Zhe, Zhang Zizhan, Zheng Shuo, Yan Haoming, Gao Chunchun, 2025. Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage. Earth Science, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046

    Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage

    doi: 10.3799/dqkx.2024.046
    • Received Date: 2024-03-17
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • Studying the interannual fluctuations during the rise of Global Mean Sea Level (GMSL) helps us to gain a deeper understanding of the changes in GMSL. This work mainly studies the two significant interannual fluctuations and their causes experienced by GMSL between 2005 and 2016, quantitatively estimates the spital distribution and contribution of terrestrial water storage (TWS) anomaly to GMSL changes in different global continent and analyzes the correlation between abnormal TWS changes in different continents and El Niño southern oscillation (ENSO). The results show that in the interannual fluctuations of GMSL, the contribution of gravity sea level (BSL) changes related to oceanic mass changes is 80%, and the contribution of steric sea level changes related to changes in seawater temperature and salinity is about 20%. The melting of ice sheets in Greenland and Antarctica mainly affects the long-term trend of BSL. TWS anomaly change in different continents affects the interannual changes of BSL differently, with South America contributing the most, followed by North America, Asia, and Oceania, the TWS contribution from Europe is the smallest. The correlation between TWS anomaly change in South America and ENSO is the strongest, with a correlation coefficient of -0.76 and a phase lead of 7 months. The correlation is the weakest in North America, reaching its maximum value of -0.25 at a phase lead of 5 months.

       

    • loading
    • Allan, R. J., Nicholls, N., Jones, P. D., et al., 1991. A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure. Journal of Climate, 4(7): 743-749. https://doi.org/10.1175/1520-0442(1991)0040743: afeott>2.0.co;2 doi: 10.1175/1520-0442(1991)0040743:afeott>2.0.co;2
      Barnoud, A., Pfeffer, J., Cazenave, A., et al., 2023. Revisiting the Global Mean Ocean Mass Budget over 2005—2020. Ocean Science, 19(2): 321-334. https://doi.org/10.5194/os-19-321-2023
      Barnoud, A., Pfeffer, J., Guérou, A., et al., 2021. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016. Geophysical Research Letters, 48(14): e2021GL092824. https://doi.org/10.1029/2021GL092824
      Bettadpur, S., 2018. Level-2 Gravity Field Product User Handbook. Grace Project, 4: 21.
      Boening, C., Willis, J. K., Landerer, F. W., et al., 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012GL053055
      Cazenave, A., Moreira, L., 2022. Contemporary Sea-Level Changes from Global to Local Scales: A Review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2261): 20220049. https://doi.org/10.1098/rspa.2022.0049
      Chao, B. F., Wu, Y. H., Li, Y. S., 2008. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science, 320(5873): 212-214. https://doi.org/10.1126/science.1154580
      Chen, J. L., Tapley, B., Wilson, C., et al., 2020. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements. Geophysical Research Letters, 47(22): e2020GL090656. https://doi.org/10.1029/2020GL090656
      Chen, J. L., Wilson, C. R., Li, J., et al., 2015. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica. Journal of Geodesy, 89(9): 925-940. https://doi.org/10.1007/s00190-015-0824-2
      Dahle, C., Flechtner, F., Murböck, M., et al., 2018. GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018)[R/PDF]//Scientific Technical Report-Data; 18/04; ISSN 1610-0956. GFZ German Research Centre for Geosciences: 513 kB[2021-11-10]. https://gfzpublic.gfz-potsdam.de/pubman/item/item_3489896. https://doi.org/10.2312/GFZ.B103-18048
      Dahle, C., Murböck, M., Flechtner, F., et al., 2019. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 11(18): 2116. https://doi.org/10.3390/rs11182116
      Good, S. A., Martin, M. J., Rayner, N. A., 2013. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates. Journal of Geophysical Research (Oceans), 118(12): 6704-6716. https://doi.org/10.1002/2013JC009067
      Gregory, J. M., Griffies, S. M., Hughes, C. W., et al., 2019. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 40(6): 1251-1289. https://doi.org/10.1007/s10712-019-09525-z
      Hamlington, B. D., Gardner, A. S., Ivins, E., et al., 2020. Understanding of Contemporary Regional Sea-Level Change and the Implications for the Future. Reviews of Geophysics, 58(3): e2019RG000672. https://doi.org/10.1029/2019RG000672
      Hosoda, S., 2007. Grid Point Value of the Monthly Objective Analysis Using the Argo Data. JAMSTEC[2023-01-11]. https://www.jamstec.go.jp/datadoi/doi/10.17596/0000102.html. https://doi.org/10.17596/0000102
      Jayne, S. R., Wahr, J. M., Bryan, F. O., 2003. Observing Ocean Heat Content Using Satellite Gravity and Altimetry. Journal of Geophysical Research: Oceans, 108(C2): 3031. https://doi.org/10.1029/2002JC001619
      Kuo, Y. N., Lo, M. H., Liang, Y. C., et al., 2021. Terrestrial Water Storage Anomalies Emphasize Interannual Variations in Global Mean Sea Level during 1997—1998 and 2015—2016 El Niño Events. Geophysical Research Letters, 48(18): e2021GL094104. https://doi.org/10.1029/2021GL094104
      Leuliette, E., Willis, J., 2011. Balancing the Sea Level Budget. Oceanography, 24(2): 122-129. https://doi.org/10.5670/oceanog.2011.32
      Llovel, W., Balem, K., Tajouri, S., et al., 2023. Cause of Substantial Global Mean Sea Level Rise over 2014—2016. Geophysical Research Letters, 50(19): e2023GL104709. https://doi.org/10.1029/2023GL104709
      Llovel, W., Becker, M., Cazenave, A., et al., 2011. Terrestrial Waters and Sea Level Variations on Interannual Time Scale. Global and Planetary Change, 75(1-2): 76-82. https://doi.org/10.1016/j.gloplacha.2010.10.008
      Loomis, B. D., Rachlin, K. E., Luthcke, S. B., 2019. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise. Geophysical Research Letters, 46(12): 6910-6917. https://doi.org/10.1029/2019GL082929
      Loomis, B. D., Rachlin, K. E., Wiese, D. N., et al., 2020. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophysical Research Letters, 47(3): e2019GL085488. https://doi.org/10.1029/2019GL085488
      Mu, D. P., Yan, H. M., 2018. The Instantaneous Rate of Global Mean Sea Level Rise. Chinese Journal of Geophysics, 61(12): 4758-4766(in Chinese with English abstract).
      Peltier, W. R., 2009. Closure of the Budget of Global Sea Level Rise over the GRACE Era: The Importance and Magnitudes of the Required Corrections for Global Glacial Isostatic Adjustment. Quaternary Science Reviews, 28(17-18): 1658-1674. https://doi.org/10.1016/j.quascirev.2009.04.004
      Peltier, W. R., Argus, D. F., Drummond, R., 2015. Space Geodesy Constrains Ice Age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487. https://doi.org/10.1002/2014JB011176
      Roemmich, D., Gilson, J., 2009. The 2004–2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004
      Save, H., Bettadpur, S., Tapley, B. D., 2016. High-Resolution CSR GRACE RL05 Mascons. Journal of Geophysical Research: Solid Earth, 121(10): 7547-7569. https://doi.org/10.1002/2016jb013007
      Sun, Y., Riva, R., Ditmar, P., 2016. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. Journal of Geophysical Research: Solid Earth, 121(11): 8352-8370. https://doi.org/10.1002/2016JB013073
      Swenson, S., Chambers, D., Wahr, J., 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007JB005338
      Swenson, S., Wahr, J., 2006. Post-Processing Removal of Correlated Errors in GRACE Data. Geophysical Research Letters, 33(8): L08402. https://doi.org/10.1029/2005GL025285
      Tang, L., Li, J., Chen, J. L., et al., 2020. Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE. Remote Sensing, 12(6): 935. https://doi.org/10.3390/rs12060935
      van der Ent, R. J., Tuinenburg, O. A., 2017. The Residence Time of Water in the Atmosphere Revisited. Hydrology and Earth System Sciences, 21(2): 779-790. https://doi.org/10.5194/hess-21-779-2017
      Wahr, J., Molenaar, M., Bryan, F., 1998. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229. https://doi.org/10.1029/98JB02844
      Wang, L. S., Chen, C., Du, J. S., et al., 2014. Impact of Water Impoundment of Large Reservoirs on Spatial Variation of Coastal Relative Sea Level in China. Earth Science, 39(11): 1707-1716(in Chinese with English abstract).
      Watkins, M. M., Wiese, D. N., Yuan, D. N., et al., 2015. Improved Methods for Observing Earth's Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. Journal of Geophysical Research: Solid Earth, 120(4): 2648-2671. https://doi.org/10.1002/2014JB011547
      WCRP, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
      Wong, A., Keeley, R., Carval, T., et al., 2021. Argo Quality Control Manual for CTD and Trajectory Data. Ifremer[2021-11-17]. https://archimer.ifremer.fr/doc/00228/33951/. https://doi.org/10.13155/33951
      Xu, C. Y., Li, J., 2022. Seismic Contributions to Secular Changes in Global Geodynamic Parameters. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024590. https://doi.org/10.1029/2022JB024590
      Yang, Y. Y., Feng, W., Zhong, M., et al., 2022. Basin-Scale Sea Level Budget from Satellite Altimetry, Satellite Gravimetry, and Argo Data over 2005 to 2019. Remote Sensing, 14(18): 4637. https://doi.org/10.3390/rs14184637
      Zhang, Z. Z., Chao, B. F., Chen, J. L., et al., 2015. Terrestrial Water Storage Anomalies of Yangtze River Basin Droughts Observed by GRACE and Connections with ENSO. Global and Planetary Change, 126: 35-45. https://doi.org/10.1016/j.gloplacha.2015.01.002
      穆大鹏, 闫昊明, 2018. 全球平均海平面上升的瞬时速率. 地球物理学报, 61(12): 4758-4766.
      王林松, 陈超, 杜劲松, 等, 2014. 中国大型水库蓄水对近海相对海平面空间变化的影响. 地球科学, 39(11): 1707-1716.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(2)

      Article views (77) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return