Citation: | Liu Jie, Chen Qian, Xu Yan, Zha Xini, Zhang Meiyi, Xin Xiaokang, Tang Wenzhong, Zhang Hong, 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061 |
Adu, J., Kumarasamy, M. V., 2018. Assessing Non-Point Source Pollution Models: A Review. Polish Journal of Environmental Studies, 27(5): 1913-1922. https://doi.org/10.15244/pjoes/76497
|
Billen, G., Garnier, J., 1997. The Phison River Plume: Coastal Eutrophication in Response to Changes in Land Use and Water Management in the Watershed. Aquatic Microbial Ecology, 13: 3-17. https://doi.org/10.3354/ame013003
|
Brown, L. C., Barnwell, T. O., 1987. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS Documentation and User Manual. Environmental Protection Agency, GA, Athens.
|
Chen, C., Zhang, H., Shi, W. X., et al., 2023a. A Novel Paradigm for Integrating Physics-Based Numerical and Machine Learning Models: A Case Study of Eco- Hydrological Model. Environmental Modelling & Software, 163: 105669. https://doi.org/10.1016/j.envsoft.2023.105669
|
Chen, S. Y., Huang, J. L., Huang, J. C., 2023b. Improving Daily Streamflow Simulations for Data-Scarce Watersheds Using the Coupled SWAT-LSTM Approach. Journal of Hydrology, 622: 129734. https://doi.org/10.1016/j.jhydrol.2023.129734
|
Elsbury, K. E., Paytan, A., Ostrom, N. E., et al., 2009. Using Oxygen Isotopes of Phosphate to Trace Phosphorus Sources and Cycling in Lake Erie. Environmental Science & Technology, 43(9): 3108-3114. https://doi.org/10.1021/es8034126
|
Fergus, C. E., Brooks, J. R., Kaufmann, P. R., et al., 2020. Lake Water Levels and Associated Hydrologic Characteristics in the Conterminous U. S., Journal of the American Water Resources Association, 56(3): 450-471. https://doi.org/10.1111/1752-1688.12817
|
Geng, M. M., Li, F., Gao, Y., et al., 2021a. Wetland Area Change from 1986-2016 in the Dongting Lake Watershed at the Sub-Watershed Scale. Polish Journal of Environmental Studies, 30(2): 1611-1620. https://doi.org/10.15244/pjoes/127268
|
Geng, M. M., Wang, K. L., Yang, N., et al., 2021b. Spatiotemporal Water Quality Variations and Their Relationship with Hydrological Conditions in Dongting Lake after the Operation of the Three Gorges Dam, China. Journal of Cleaner Production, 283: 124644. https://doi.org/10.1016/j.jclepro.2020.124644
|
Geng, M. M., Wang, K. L., Qian, Z., et al., 2023. Is Water Resources Management at the Expense of Deteriorating Water Quality in a Large River-Connected Lake after the Construction of a Lake Sluice?. Ecological Engineering, 197: 107124. https://doi.org/10.1016/j.ecoleng.2023.107124
|
He, Q. H., Yu, D. Q., Yu, S. C., et al., 2021. Changes of Water Resources Amount in Dongting Lake before and after the Operation of the Three Gorges Reservoir. Earth Science, 46(1): 293-307 (in Chinese with English abstract).
|
Hong, B., Swaney, D. P., McCrackin, M., et al., 2017. Advances in NANI and NAPI Accounting for the Baltic Drainage Basin: Spatial and Temporal Trends and Relationships to Watershed TN and TP Fluxes. Biogeochemistry, 133(3): 245-261. https://doi.org/10.1007/s10533-017-0330-0
|
Hu, G. W., Liang, Y. W., Zhuang, S. Q., et al., 2023. Spatial-Temporal Variation of Agricultural Non-Point Source Pollution Emission in Dongting Lake Basin. Environmental Ecology, 5(3): 59-65 (in Chinese with English abstract).
|
Hu, T. F., Mao, J. Q., Pan, S. Q., et al., 2018. Water Level Management of Lakes Connected to Regulated Rivers: An Integrated Modeling and Analytical Methodology. Journal of Hydrology, 562: 796-808. https://doi.org/10.1016/j.jhydrol.2018.05.038
|
Huang, R. X., Ma, C. X., Ma, J., et al., 2021. Machine Learning in Natural and Engineered Water Systems. Water Research, 205: 117666. https://doi.org/10.1016/j.watres.2021.117666
|
Huo, S. L., Ma, C. Z., Li, W. P., et al., 2023. Spatiotemporal Differences in Riverine Nitrogen and Phosphorus Fluxes and Associated Drivers across China from 1980 to 2018. Chemosphere, 310: 136827. https://doi.org/10.1016/j.chemosphere.2022.136827
|
Karpatne, A., Ebert-Uphoff, I., Ravela, S., et al., 2019. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Transactions on Knowledge and Data Engineering, 31(8): 1544-1554. https://doi.org/10.1109/TKDE.2018.2861006
|
Kratzert, F., Klotz, D., Shalev, G., et al., 2019. Towards Learning Universal, Regional, and Local Hydrological Behaviors Via Machine Learning Applied to Large-Sample Datasets. Hydrology and Earth System Sciences, 23(12): 5089-5110. https://doi.org/10.5194/hess-23-5089-2019
|
Lindemann, B., Müller, T., Vietz, H., et al., 2021. A Survey on Long Short-Term Memory Networks for Time Series Prediction. Procedia CIRP, 99: 650-655. https://doi.org/10.1016/j.procir.2021.03.088
|
Liu, J. J., Yuan, X., Zeng, J. H., et al., 2022a. Ensemble Streamflow Forecasting over a Cascade Reservoir Catchment with Integrated Hydrometeorological Modeling and Machine Learning. Hydrology and Earth System Sciences, 26(2): 265-278. https://doi.org/10.5194/hess-26-265-2022
|
Liu, X., Lu, D. W., Zhang, A. Q., et al., 2022b. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environmental Science & Technology, 56(4): 2124-2133. https://doi.org/10.1021/acs.est.1c06157
|
Liu, X. P., Lu, M. Z., Chai, Y. Z., et al., 2021. A Comprehensive Framework for HSPF Hydrological Parameter Sensitivity, Optimization and Uncertainty Evaluation Based on SVM Surrogate Model: A Case Study in Qinglong River Watershed, China. Environmental Modelling & Software, 143: 105126. https://doi.org/10.1016/j.envsoft.2021.105126
|
Long, X., Lin, H., An, X., et al., 2022. Evaluation and Analysis of Ecosystem Service Value Based on Land use/Cover Change in Dongting Lake Wetland. Ecological Indicators, 136: 108619. https://doi.org/10.1016/j.ecolind.2022.108619
|
Nasr, A., Bruen, M., Jordan, P., et al., 2007. A Comparison of SWAT, HSPF and SHETRAN/GOPC for Modelling Phosphorus Export from Three Catchments in Ireland. Water Research, 41(5): 1065-1073. https://doi.org/10.1016/j.watres.2006.11.026
|
Nie, L. J., Zeng, L. H., Ji, J., et al., 2022. Centurial Changes in Sedimentary Phosphorus Forms and Trace Elements in Response to Damming and Anthropogenic Pollution in a Floodplain Lake, Central China. Environmental Science and Pollution Research, 29(19): 28446-28457. https://doi.org/10.1007/s11356-021-18476-1
|
People's Government of Hunan Province, 2019. Hunan Provincial People's Government on the Issuance of the Implementation Program of Hunan Province Dongting Lake Water Environment Comprehensive Management Plan (2018-2025). Gazette of the People's Government of Hunan Province, (21): 2-22 (in Chinese).
|
Powers, S. M., Bruulsema, T. W., Burt, T. P., et al., 2016. Long-Term Accumulation and Transport of Anthropogenic Phosphorus in Three River Basins. Nature Geoscience, 9: 353-356. https://doi.org/10.1038/ngeo2693
|
Rezaeianzadeh, M., Stein, A., Tabari, H., et al., 2013. Assessment of a Conceptual Hydrological Model and Artificial Neural Networks for Daily Outflows Forecasting. International Journal of Environmental Science and Technology, 10(6): 1181-1192. https://doi.org/10.1007/s13762-013-0209-0
|
Sharpley, A. N., Williams, J. R., 1990. EPIC-Erosion/ Productivity Impact Calculator: 1. Model Documentation. US Department of Agriculture, Washington D. C. .
|
Singh, V. P., Frevert, D. K., 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications, Highlands Ranch, Colo.
|
Sutton, M. A., Mason, K. E., Bleeker, A., et al., 2020. Global Nitrogen and Phosphorus Pollution. Springer International Publishing AG, Switzerland, 421-431.
|
Tan, Y., Chen, M., Zhang, L. L., et al., 2022. Flux and Spatial Pattern of Phosphorus in the Shigatse Section of the Yarlung Zangbo River, China. Ecological Indicators, 135: 108552. https://doi.org/10.1016/j.ecolind.2022.108552
|
Wang, D. Y., Han, J. C., Li, R., et al., 2023. Nutritional Characteristics in the Waterbody of Lake Dongting Area Nutrient Condition and Associated Improvement Measures under the Extreme Drought in 2022. Journal of Lake Sciences, 35(6): 1970-1978 (in Chinese with English abstract).
|
Wang, H. Y., Ti, C. P., Wang, L. J., et al., 2022. SpatioTemporal Distribution Characteristics and Key Sources of Nitrogen Pollution in a Typical Agricultural Watershed Based on SWAT Model. Journal of Lake Sciences, 34(2): 517-527 (in Chinese with English abstract). doi: 10.18307/2022.0213
|
Wang, Y. D., Ouyang, W., Zhang, Y. H., et al., 2021. Quantify Phosphorus Transport Distinction of Different Reaches to Estuary under Long-Term Anthropogenic Perturbation. Science of the Total Environment, 780: 146647. https://doi.org/10.1016/j.scitotenv.2021.146647
|
Wang, Y. S., Xie, X., Liu, C., et al., 2020. Variation of Net Anthropogenic Phosphorus Inputs (NAPI) and Riverine Phosphorus Fluxes in Seven Major River Basins in China. Science of the Total Environment, 742: 140514. https://doi.org/10.1016/j.scitotenv.2020.140514
|
Xu, B., Li, Y., Han, F., et al., 2020. The Transborder Flux of Phosphorus in the Lancang-Mekong River Basin: Magnitude, Patterns and Impacts from the Cascade Hydropower Dams in China. Journal of Hydrology, 590: 125201. https://doi.org/10.1016/j.jhydrol.2020.125201
|
Wei, K., Ouyang, C. J., Duan, H. T., et al., 2020. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innovation (Cambridge (Mass)), 1(2): 100038. https://doi.org/10.1016/j.xinn.2020.100038
|
Wu, X. C., Ma, T., Du, Y., et al., 2021. Phosphorus Cycling in Freshwater Lake Sediments: Influence of Seasonal Water Level Fluctuations. Science of the Total Environment, 792: 148383. https://doi.org/10.1016/j.scitotenv.2021.148383
|
Zhang, X. Q., Zhao, D., Wang, T., et al., 2022. A Novel Rainfall Prediction Model Based on CEEMDAN-PSO-ELM Coupled Model. Water Supply, 22(4): 4531-4543. https://doi.org/10.2166/ws.2022.115
|
Zhao, A. Z., Zhao, Y. L., Liu, X. F., et al., 2016. Impact of Human Activities and Climate Variability on Green and Blue Water Resources in the Weihe River Basin of Northwest China. Scientia Geographica Sinica, 36(4): 571-579 (in Chinese with English abstract).
|
Zhao, G., Merder, J., Ballard, T. C., et al., 2023. Warming may Offset Impact of Precipitation Changes on Riverine Nitrogen Loading. Proceedings of the National Academy of Sciences of the United States of America, 120(33): e2220616120. https://doi.org/10.1073/pnas.2220616120
|
贺秋华, 余德清, 余姝辰, 等, 2021. 三峡水库运行前后洞庭湖水资源量变化. 地球科学, 46(1): 293-307.
|
胡光伟, 梁业伟, 庄少奇, 等, 2023. 洞庭湖流域农业面源污染时空分异特征与防治建议. 环境生态学, 5(3): 59-65.
|
湖南省人民政府, 2019. 湖南省人民政府关于印发《湖南省洞庭湖水环境综合治理规划实施方案(2018—2025年)》的通知. 湖南省人民政府公报, (21): 2-22.
|
王丹阳, 韩锦诚, 黎睿, 等, 2023. 2022年极端干旱下洞庭湖区水体营养状态变化及改善对策. 湖泊科学, 35(6): 1970-1980.
|
王慧勇, 遆超普, 王良杰, 等, 2022. 基于SWAT模型的典型农业小流域氮污染时空分布特征及关键源解析. 湖泊科学, 34(2): 517-527.
|
赵安周, 赵玉玲, 刘宪锋, 等, 2016. 气候变化和人类活动对渭河流域蓝水绿水影响研究. 地理科学, 36(4): 571-579.
|