• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Chen Congmin, Zhou Yun, Feng Zuohai, Li Zhenglin, Cai Jin, Jiao Xianyang, Cai Yongfeng, 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062
    Citation: Chen Congmin, Zhou Yun, Feng Zuohai, Li Zhenglin, Cai Jin, Jiao Xianyang, Cai Yongfeng, 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062

    Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication

    doi: 10.3799/dqkx.2024.062
    • Received Date: 2023-10-11
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • The Diancangshan-Ailaoshan tectonic belt in the West Yunnan has developed numerous Precambrian rocks and thus provides an ideal window for revealing the Precambrian tectonic history of the southwestern margin of the Yangtze block. In this study, elemental geochemistry and isotopic geochronology of gabbro in the Diancangshan area are presented. The results show that the intrusion age of the gabbro is 771-769 Ma, indicating that Neoproterozoic mafic magmatic activity developed in the Diancangshan area. The gabbro of the Diancangshan area exhibits a variation in total alkali content (K2O+Na2O) of 4.40%-4.49%, with low Na2O/K2O ratios (2.30-2.34), and thus belongs to the calc-alkaline series. The samples have relatively high contents of Fe2O3t (7.36%-7.50%), MgO (7.15%-7.30%), and Mg# (69.46-69.52). They are characterized by enrichment in large ion lithophile elements (LILE) such as Rb, Ba, and Sr, and depletion in high field strength elements (HFSE) such as Nb, Ta, and Ti. The samples display a relative enrichment of light rare earth elements with a pronounced fractionation between light and heavy rare earth elements, and have slightly positive anomalies of Eu (Eu/Eu*=1.17-1.29), They have depleted zircon Hf isotopic compositions with positive εHf(t) values of 6.72-10.84.Comprehensive data show that the gabbro formed in back-arc basin environment and is the product of partial melting of mantle wedge peridotite that was metasomated by subducted fluid. During the Neoproterozoic, arc-basin system was developed at the southwestern Yangtze Block, and the South China located at the margin of the Rodinia Supercontinent during this period.

       

    • loading
    • Ao, W. H., Zhao, Y., Zhang, Y. K., et al., 2019. The Neoproterozoic Magmatism in the Northern Margin of the Yangtze Block: Insights from Neoproterozoic (950-706 Ma) Gabbroic-Granitoid Rocks of the Hannan Complex. Precambrian Research, 333: 105442. https://doi.org/10.1016/j.precamres.2019.105442
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Brophy, J. G., Marsh, B. D., 1986. On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction. Journal of Petrology, 27(4): 763-789. https://doi.org/10.1093/petrology/27.4.763
      Cai, Y. F., Liu, H. C., Feng, Z. H., et al., 2020. Neoproterozoic Active Margin of the SW South China Block: Constraints from U-Pb Ages, Sr-Nd Isotopes and Geochemical Data for the Gabbro and Granodiorite along the Ailaoshan Tectonic Belt. Lithos, 358: 105387. https://doi.org/10.1016/j.lithos.2020.105387
      Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China: Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245: 13-28. https://doi.org/10.1016/j.precamres.2014.01.009
      Chen, X. Y., Liu, J. L., Fan, W. K., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt: Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299: 244-263. https://doi.org/10.1016/j.precamres.2017.06.024
      Chung, S. L., Lee, T. Y., Lo, C. H., et al., 1997. Intraplate Extension Prior to Continental Extrusion along the Ailao Shan-Red River Shear Zone. Geology, 25(4): 311. https://doi.org/10.1130/0091-7613(1997)0250311:ieptce>2.3.co;2 doi: 10.1130/0091-7613(1997)0250311:ieptce>2.3.co;2
      Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268-299. https://doi.org/10.1016/j.earscirev.2014.05.015
      Ernst, R. E., Buchan, K. L., Campbell, I. H., 2005. Frontiers in Large Igneous Province Research. Lithos, 79(3-4): 271-297. https://doi.org/10.1016/j.lithos.2004.09.004
      Ewart, A., Collerson, K. D., Regelous, M., et al., 1998. Geochemical Evolution within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time. Journal of Petrology, 39(3): 331-368. https://doi.org/10.1093/petroj/39.3.331
      Gamble, J. A., Wright, I. C., Woodhead, J. D., et al., 1994. Arc and Back-Arc Geochemistry in the Southern Kermadec Arc-Ngatoro Basin and Offshore Taupo Volcanic Zone, SW Pacific. Geological Society, London, Special Publications, 81(1): 193-212. 10.1144/GSL.SP.1994.081.01.11
      Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252(5011): 1409-1412. https://doi.org/10.1126/science.252.5011.1409
      Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2020. U-Pb Zircon Geochronology, Geochemistry, and Sr-Nd-Hf-O Isotopic Study of Middle Neoproterozoic Magmatic Rocks in the Kangdian Rift, South China: Slab Rollback and Backarc Extension at the Northwestern Edge of the Rodinia. Precambrian Research, 347: 105863. https://doi.org/10.1016/j.precamres.2020.105863
      Kou, C. H., Liu, Y. X., Li, J., et al., 2022. Geochronology and Geochemistry of 830 Ma Gabbro in the Western Segment of the Jiangnan Orogen and Constraint on Its Petrogenesis. Earth Science Frontiers, 29(2): 218-233(in Chinese with English abstract).
      Lai, S. C., Zhu, Y., 2020. Petrogenesis and Geodynamic Implications of Neoproterozoic Typical Intermediate-Felsic Magmatism in the Western Margin of the Yangtze Block, South China. Journal of Geomechanics, 26(5): 759-790(in Chinese with English abstract).
      Li, B. L., Ji, J. Q., Fu, X. Y., et al., 2008. Zircon SHRIMP Dating and Its Geological Implications of the Metamorphic Rocks in Ailao Shan-Diancang Mountain Ranges, West Yunnan. Acta Petrologica Sinica, 24(10): 2322-2330(in Chinese with English abstract). http://www.oalib.com/paper/1471252
      Li, D. P., Chen, Y. L., Kang, H., et al., 2018. Neoproterozoic Continental Arc System along the NW Margin of Rodinia Supercontinent: Constraints from Geochronological and Geochemical Studies of Neoproterozoic Granitoids in the Diancangshan Massif. Lithos, 316: 77-91. https://doi.org/10.1016/j.lithos.2018.07.011
      Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559(in Chinese with English abstract).
      Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/s0012-821x(99)00240-x doi: 10.1016/S0012-821X(99)00240-X
      Liu, J. L., Tang, Y., Song, Z. J., et al., 2011. The Ailaoshan Belt in Western Yunnan: Tectonic Framework and Tectonic Evolution. Journal of Jilin University (Earth Science Edition), 41(5): 1285-1303(in Chinese with English abstract).
      Liu, J. L., Wang, A. J., Cao, S. Y., et al., 2008. Geochronology and Tectonic Implication of Migmatites from Diancangshan, Western Yunnan, China. Acta Petrologica Sinica, 24(3): 413-420(in Chinese with English abstract). http://www.oalib.com/paper/1472578
      Liu, P. W., Zhang, J. B., Ding, X. Z., et al., 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526(in Chinese with English abstract).
      Luhr, J. F., Haldar, D., 2006. Barren Island Volcano (NE Indian Ocean): Island-Arc High-Alumina Basalts Produced by Troctolite Contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177-212. https://doi.org/10.1016/j.jvolgeores.2005.06.003
      Luo, G., Zhang, T., Jia, X. C., et al., 2021. Geochronology, Geochemical Features and Geological Significance of the Granitic Gneiss in the Shigu Complex, Northwest Yunnan, China. Acta Geologica Sinica, 95(11): 3335-3351(in Chinese with English abstract).
      Ma, Y. C., Cai, Y. F., Ma, L. Y., et al., 2021. Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry. Earth Science, 46(8): 2860-2872(in Chinese with English abstract).
      McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374. https://doi.org/10.1016/0012-821x(91)90029-h
      Nishiya, T., Watanabe, T., Yokoyama, K., 2001. Reconstruction and Breakup of the Rodinia Supercontinent: Constraints from Chronology in North Queensland, NE Australia. Gondwana Research, 4(4): 718. https://doi.org/10.1016/s1342-937x(05)70515-3
      Niu, Y., Gilmore, T., Mackie, S., et al., 2002. Mineral Chemistry, Whole-Rock Compositions, and Petrogenesis of Leg 176 Gabbros: Data and Discussion. In: Natland, J. H., Dick, H. J. B., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 176: 1-60. 10.2973/odp.proc.sr.176.011.2002
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      Qi, X. X., Wang, X. H., Zhu, L. H., et al., 2010. Validation on Age of Neoproterozoic Intrusions from Northeastern Margin of Indochina Block, Western Yunnan and Its Tectonic Implication: Evidence from Zircon LA-ICP-MS U-Pb Dating and Geochemistry. Acta Petrologica Sinica, 26(7): 2141-2154(in Chinese with English abstract).
      Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. 10.1144/gsl.sp.1989.042.01.19
      Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99-126. https://doi.org/10.1016/j.precamres.2009.03.010
      Sun, W. H., Zhou, M. F., Yan, D. P., et al., 2008. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1-2): 213-236. https://doi.org/10.1016/j.precamres.2008.08.001
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
      Xu, J., Xia, X. P., Yin, C. Q., et al., 2022. Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt: Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block, South China. Precambrian Research, 383: 106907. https://doi.org/10.1016/j.precamres.2022.106907
      Xu, W., Dong, Y. S., Zhang, X. Z., et al., 2016. Petrogenesis of High-Ti Mafic Dykes from Southern Qiangtang, Tibet: Implications for a ca. 290 Ma Large Igneous Province Related to the Early Permian Rifting of Gondwana. Gondwana Research, 36: 410-422. https://doi.org/10.1016/j.gr.2015.07.016
      Xu, W. T., Liu, F. L., 2020. The Late Paleozoic Arc-Back Arc System in Western Ailaoshan: Evidence from Geochemistry and Geochronology of Basic Rocks. Acta Petrologica et Mineralogica, 39(4): 406-422(in Chinese with English abstract).
      Xu, X. S., Qiu, J. S., 2010. Igneous Petrology. Science Press, Beijing, 317(in Chinese).
      Yang, Z. N., Cai, X. Y., Yang, K. G., et al., 2023. Chronological and Geochemical Studies of the Middle Neoproterozoic Mafic Rock and Turbidite in the Dahongshan Orogenic Belt on the Northern Margin of the Yangtze Block: Implications for the Evolution of the Back-Arc Basin. Acta Petrologica Sinica, 39(5): 1423-1440(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.05.13
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      寇彩化, 刘燕学, 李江, 等, 2022. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究. 地学前缘, 29(2): 218-233.
      赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望. 地质力学学报, 26(5): 759-790.
      李宝龙, 季建清, 付孝悦, 等, 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24(10): 2322-2330.
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解: 观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
      刘俊来, 唐渊, 宋志杰, 等, 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303.
      刘俊来, 王安建, 曹淑云, 等, 2008. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵. 岩石学报, 24(3): 413-420.
      刘佩雯, 张继彪, 丁孝忠, 等, 2023. 扬子西缘新元古代盐边群火山岩年代学及大地构造背景. 地球科学, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
      罗改, 张彤, 贾小川, 等, 2021. 滇西北石鼓杂岩中花岗质片麻岩年代学、地球化学特征及地质意义. 地质学报, 95(11): 3335-3351.
      麻艺超, 蔡永丰, 马莉燕, 等, 2021. 滇西点苍山新元古代斜长角闪岩的成因: 来自锆石U-Pb年龄和全岩地球化学的证据. 地球科学, 46(8): 2860-2872. doi: 10.3799/dqkx.2020.288
      戚学祥, 王秀华, 朱路华, 等, 2010. 滇西印支地块东北缘新元古代侵入岩形成时代的厘定及其构造意义: 锆石LA-ICP-MS U-Pb定年及地球化学证据. 岩石学报, 26(7): 2141-2154.
      徐文涛, 刘福来, 2020. 哀牢山西部晚古生代岛弧-弧后盆地系统: 来自基性岩地球化学和年代学的证据. 岩石矿物学杂志, 39(4): 406-422.
      徐夕生, 邱检生, 2010. 火成岩岩石学. 北京: 科学出版社, 317.
      杨振宁, 蔡晓芸, 杨坤光, 等, 2023. 扬子北缘大洪山造山带中新元古代基性岩和浊积岩的年代学和地球化学研究: 对弧后盆地演化的指示. 岩石学报, 39(5): 1423-1440.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (285) PDF downloads(46) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return