Citation: | Deng Xingbin, Huang Shen, Ren Kun, Huang Nanrui, He Guang, Huang Huiji, Zeng Jie, Cheng Ruirui, Pan Xiaodong, 2025. Hydrochemical and Isotopic Characteristics of Water in Mamian Pyrite Mining Area and Their Environmental Indication Significance. Earth Science, 50(4): 1531-1544. doi: 10.3799/dqkx.2024.064 |
Bottrell, S., Tellam, J., Bartlett, R., et al., 2008. Isotopic Composition of Sulfate as a Tracer of Natural and Anthropogenic Influences on Groundwater Geochemistry in an Urban Sandstone Aquifer, Birmingham, UK. Applied Geochemistry, 23(8): 2382-2394. https://doi.org/10.1016/j.apgeochem.2008.03.012
|
Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S-SO42- on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443(in Chinese with English abstract).
|
Chen, H., Cui, Y. H., Wang, H. M., et al., 2024. Advances in Mines Ecological Restoration and Carbon Sequestration Potential. Earth Science, 49(12): 4594-4607(in Chinese with English abstract).
|
Cidu, R., Dadea, C., Desogus, P., et al., 2012. Assessment of Environmental Hazards at Abandoned Mining Sites: A Case Study in Sardinia, Italy. Applied Geochemistry, 27(9): 1795-1806. https://doi.org/10.1016/j.apgeochem.2012.02.014
|
Feng, J., Zhou, C. L., Yang, Q., et al., 2023. Performance and Mechanisms of PropS-SH/Ce(dbp)3 Coatings in the Inhibition of Pyrite Oxidationtion for Acid Mine Drainage Control. Environmental Pollution, 322: 121162. https://doi.org/10.1016/j.envpol.2023.121162
|
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
|
Gammons, C. H., Brown, A., Poulson, S. R., et al., 2013. Using Stable Isotopes (S, O) of Sulfate to Track Local Contamination of the Madison Karst Aquifer, Montana, from Abandoned Coal Mine Drainage. Applied Geochemistry, 31: 228-238. https://doi.org/10.1016/j.apgeochem.2013.01.008
|
Gammons, C. H., Duaime, T. E., Parker, S. R., et al., 2010. Geochemistry and Stable Isotope Investigation of Acid Mine Drainage Associated with Abandoned Coal Mines in Central Montana, USA. Chemical Geology, 269(1/2): 100-112. https://doi.org/10.1016/j.chemgeo.2009.05.026
|
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
|
Guo, Y. S., Yu, S., Li, Y. S., et al., 2016. Chemical Characteristics and Source of Acid Precipitation in Guilin. Environmental Science, 37(8): 2897-2905(in Chinese with English abstract).
|
Hakkou, R., Benzaazoua, M., Bussière, B., 2008. Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water and the Environment, 27(3): 145-159. https://doi.org/10.1007/s10230-008-0036-6
|
Horibe, Y., Shigehara, K., Takakuwa, Y., 1973. Isotope Separation Factor of Carbon Dioxide-Water System and Isotopic Composition of Atmospheric Oxygen. Journal of Geophysical Research, 78(15): 2625-2629. https://doi.org/10.1029/JC078i015p02625
|
Huang, Q. B., Zou, S. Z., Qin, X. Q., et al., 2023. Study on Characteristics and Regulation Technology of Water Resources of Karst Wetland in Huixian, Guilin. Carsologica Sinica, 42(4): 722-732, 762(in Chinese with English abstract).
|
Jeong, C. H., 2001. Effect of Land Use and Urbanization on Hydrochemistry and Contamination of Groundwater from Taejon Area, Korea. Journal of Hydrology, 253(1-4): 194-210. https://doi.org/10.1016/S0022-1694(01)00481-4
|
Jia, X. C., Zhou, J. W., Zhu, H. H., et al., 2020. Characteristics of Sulfur Isotope in Water Bodies near the Zhaoyuan Gold Mine Area and Its Indicative Function of Pollution Sources. Hydrogeology & Engineering Geology, 47(5): 179-188(in Chinese with English abstract).
|
Jiao, Y. N., Zhang, C. H., Su, P. D., et al., 2023. A Review of Acid Mine Drainage: Formation Mechanism, Treatment Technology, Typical Engineering Cases and Resource Utilization. Process Safety and Environmental Protection, 170: 1240-1260. https://doi.org/10.1016/j.psep.2022.12.083
|
Li, X. Q., Zhou A. G., Gan, Y. Q., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3/4): 312-322(in Chinese).
|
Li, Y., Cao, M. D., Jin, M. G., et al., 2020. Hydrochemical Characteristics and Tracing of Nitrate Sources in Quanshui River Catchment, Hubei Province. Earth Science, 45(3): 1061-1070(in Chinese with English abstract).
|
Li, Y. Y., Luo, Z. J., Qi, S. H., 2024. Characteristics and Genesis of Acid Drainage Contamination from a Rock Tunneling Project Site. Journal of Earth Science, 35(1): 190-200. https://doi.org/10.1007/s12583-021-1551-7
|
Liu, C. Q., Lang, Y. C., Satake, H., et al., 2008. Identification of Anthropogenic and Natural Inputs of Sulfate and Chloride into the Karstic Ground Water of Guiyang, SW China: Combined δ37Cl and δ34S Approach. Environmental Science & Technology, 42(15): 5421-5427. https://doi.org/10.1021/es800380w
|
Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., 2019. Extreme Enrichment of Arsenic and Rare Earth Elements in Acid Mine Drainage: Case Study of Wiśniówka Mining Area (South-Central Poland). Environmental Pollution, 244: 898-906. https://doi.org/10.1016/j.envpol.2018.10.106
|
Panno, S. V., Hackley, K. C., Hwang, H. H., et al., 2006a. Characterization and Identification of Na-Cl Sources in Ground Water. Groundwater, 44(2): 176-187. https://doi.org/10.1111/j.1745-6584.2005.00127.x
|
Panno, S. V., Kelly, W. R., Martinsek, A. T., et al., 2006b. Estimating Background and Threshold Nitrate Concentrations Using Probability Graphs. Groundwater, 44(5): 697-709. https://doi.org/10.1111/j.1745-6584.2006.00240.x
|
Phillips, D. L., 2001. Mixing Models in Analyses of Diet Using Multiple Stable Isotopes: A Critique. Oecologia, 127(2): 166-170. https://doi.org/10.1007/s004420000571
|
Pu, T., He, Y. Q., Zhang, T., et al., 2013. Isotopic and Geochemical Evolution of Ground and River Waters in a Karst Dominated Geological Setting: A Case Study from Lijiang Basin, South-Asia Monsoon Region. Applied Geochemistry, 33: 199-212. https://doi.org/10.1016/j.apgeochem.2013.02.013
|
Ren, K., Pan, X. D., Yuan, D. X., et al., 2022. Nitrate Sources and Nitrogen Dynamics in a Karst Aquifer with Mixed Nitrogen Inputs (Southwest China): Revealed by Multiple Stable Isotopic and Hydro-Chemical Proxies. Water Research, 210: 118000. https://doi.org/10.1016/j.watres.2021.118000
|
Ren, K., Zeng, J., Liang, J. P., et al., 2021. Impacts of Acid Mine Drainage on Karst Aquifers: Evidence from Hydrogeochemistry, Stable Sulfur and Oxygen Isotopes. Science of the Total Environment, 761: 143223. https://doi.org/10.1016/j.scitotenv.2020.143223
|
Ren, M. M., Huang, F., Hu, X. N., et al., 2020. Characteristics and Sources of Dissolved Inorganic Carbon and Nitrate in Lijiang River Basin. Earth Science, 45(5): 1830-1843(in Chinese with English abstract).
|
Shi, W. Z., Zhao, C. H., Liang, Y. P., et al., 2022. Genetic Mechanism Analysis of Low Ca/Mg Value of Acid Goaf Water in Coal Mine Drainage. Carsologica Sinica, 41(4): 511-521(in Chinese with English abstract).
|
Singh, K. P., Gupta, S., Mohan, D., 2014. Evaluating Influences of Seasonal Variations and Anthropogenic Activities on Alluvial Groundwater Hydrochemistry Using Ensemble Learning Approaches. Journal of Hydrology, 511: 254-266. https://doi.org/10.1016/j.jhydrol.2014.01.004
|
Skousen, J., Zipper, C. E., Rose, A., et al., 2017. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water and the Environment, 36(1): 133-153. https://doi.org/10.1007/s10230-016-0417-1
|
Sun, J., Kobayashi, T., Strosnider, W. H. J., et al., 2017. Stable Sulfur and Oxygen Isotopes as Geochemical Tracers of Sulfate in Karst Waters. Journal of Hydrology, 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006
|
Tabelin, C. B., Silwamba, M., Paglinawan, F. C., et al., 2020. Solid-Phase Partitioning and Release-Retention Mechanisms of Copper, Lead, Zinc and Arsenic in Soils Impacted by Artisanal and Small-Scale Gold Mining (ASGM) Activities. Chemosphere, 260: 127574. https://doi.org/10.1016/j.chemosphere.2020.127574
|
Taylor, B. E., Wheeler, M. C., 1993. Sulfur- and Oxygen-Isotope Geochemistry of Acid Mine Drainage in the Western United States: Field and Experimental Studies Revisited. ACS Symposium Series. Washington, DC: American Chemical Society: 481-514.
|
Zhang, Y., Kelly, W. R., Panno, S. V., et al., 2014. Tracing Fecal Pollution Sources in Karst Groundwater by Bacteroidales Genetic Biomarkers, Bacterial Indicators, and Environmental Variables. Science of the Total Environment, 490: 1082-1090. https://doi.org/10.1016/j.scitotenv.2014.05.086
|
Zhao, Y., Zou, S. Z., Shen, H. Y., et al., 2021. Dynamic Characteristics and Equilibrium of Water Level of the Karst Groundwater System beneath the Huixian Wetland. Carsologica Sinica, 40(2): 325-333 (in Chinese with English abstract).
|
曹慧丽, 李伟, 苏春利, 等, 2023. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示. 地球科学, 48(9): 3432-3443. doi: 10.3799/dqkx.2022.119
|
陈珲, 崔一涵, 汪海明, 等, 2024. 矿山生态修复及其固碳潜力研究进展. 地球科学, 49(12): 4594-4607. doi: 10.3799/dqkx.2024.081
|
郭雅思, 于奭, 黎泳珊, 等, 2016. 桂林市酸雨变化特征及来源分析. 环境科学, 37(8): 2897-2905.
|
黄奇波, 邹胜章, 覃小群, 等, 2023. 桂林市会仙岩溶湿地水资源特征及有效调控. 中国岩溶, 42(4): 722-732, 762.
|
贾晓岑, 周建伟, 朱恒华, 等, 2020. 招远金矿区水体中硫同位素特征及其对污染来源的指示. 水文地质工程地质, 47(5): 179-188.
|
李严, 曹明达, 靳孟贵, 等, 2020. 湖北泉水河流域水化学特征和硝酸盐来源示踪. 地球科学, 45(3): 1061-1070. doi: 10.3799/dqkx.2019.060
|
任梦梦, 黄芬, 胡晓农, 等, 2020. 漓江流域碳氮同位素组成特征及其来源初探. 地球科学, 45(5): 1830-1843. doi: 10.3799/dqkx.2019.206
|
石维芝, 赵春红, 梁永平, 等, 2022. 煤矿酸性"老窑水"低Ca/Mg成因机制. 中国岩溶, 41(4): 511-521.
|
赵一, 邹胜章, 申豪勇, 等, 2021. 会仙湿地岩溶地下水系统水位动态特征与均衡分析. 中国岩溶, 40(2): 325-333.
|