Citation: | Qiu Mengfan, Xue Haozhong, Hu Sen, 2024. Species and Distribution of Extraterrestrial Organic Matter and Its Astrobiological Significance. Earth Science, 49(11): 4184-4203. doi: 10.3799/dqkx.2024.067 |
Abbey, W. J., Bhartia, R., Beegle, L. W., et al., 2017. Deep UV Raman Spectroscopy for Planetary Exploration: The Search for in Situ Organics. Icarus, 290: 201-214. https://doi.org/10.1016/j.icarus.2017.01.039
|
Alexander, C. M. O., Cody, G. D., de Gregorio, B. T., et al., 2017. The Nature, Origin and Modification of Insoluble Organic Matter in Chondrites, the Major Source of Earth's C and N. Geochemistry, 77(2): 227-256. https://doi.org/10.1016/j.chemer.2017.01.007
|
Alexander, C. M. O., Cody, G. D., Kebukawa, Y., et al., 2014. Elemental, Isotopic, and Structural Changes in Tagish Lake Insoluble Organic Matter Produced by Parent Body Processes. Meteoritics & Planetary Science, 49(4): 503-525. https://doi.org/10.1111/maps.12282
|
Alexander, C. M. O., Fogel, M., Yabuta, H., et al., 2007. The Origin and Evolution of Chondrites Recorded in the Elemental and Isotopic Compositions of Their Macromolecular Organic Matter. Geochimica et Cosmochimica Acta, 71(17): 4380-4403. https://doi.org/10.1016/j.gca.2007.06.052
|
Alexander, C. M. O., Newsome, S. D., Fogel, M. L., et al., 2010. Deuterium Enrichments in Chondritic Macromolecular Material—Implications for the Origin and Evolution of Organics, Water and Asteroids. Geochimica et Cosmochimica Acta, 74(15): 4417-4437. https://doi.org/10.1016/j.gca.2010.05.005
|
Alexander, C. M. O., Nilges, M. J., Cody, G. D., et al., 2022. Are Radicals Responsible for the Variable Deuterium Enrichments in Chondritic Insoluble Organic Material? Geochimica et Cosmochimica Acta, 316: 135-149. https://doi.org/10.1016/j.gca.2021.10.007
|
Altwegg, K., Balsiger, H., Bar-Nun, A., et al., 2016. Prebiotic Chemicals-Amino Acid and Phosphorus-In the Coma of Comet 67P/Churyumov-Gerasimenko. Science Advances, 2(5): e1600285. https://doi.org/10.1126/sciadv.1600285
|
Ansari, A. H., 2023. Detection of Organic Matter on Mars, Results from Various Mars Missions, Challenges, and Future Strategy: A Review. Frontiers in Astronomy and Space Sciences, 10: 1075052. https://doi.org/10.3389/fspas.2023.1075052
|
Aponte, J. C., Dworkin, J. P., Elsila, J. E., 2014. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from Their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition. Geochimica et Cosmochimica Acta, 141: 331-345. https://doi.org/10.1016/j.gca.2014.06.035
|
Bada, J. L., 2004. How Life Began on Earth: A Status Report. Earth and Planetary Science Letters, 226(1/2): 1-15. https://doi.org/10.1016/j.epsl.2004.07.036
|
Bardyn, A., Baklouti, D., Cottin, H., et al., 2017. Carbon-Rich Dust in Comet 67P/Churyumov-Gerasimenko Measured by COSIMA/Rosetta. Monthly Notices of the Royal Astronomical Society, 469(Suppl_2): S712-S722. https://doi.org/10.1093/mnras/stx2640
|
Bell, M. B., Feldman, P. A., Watson, J. K. G., et al., 1999. Observations of Long CnH Molecules in the Dust Cloud TMC-1. The Astrophysical Journal, 518(2): 740-747. https://doi.org/10.1086/307303
|
Bernal, J. D., 1961. Significance of Carbonaceous Meteorites in Theories on the Origin of Life. Nature, 190: 129-131. https://doi.org/10.1038/190129a0
|
Berzelius, J. J., 1834. Ueber Meteorsteine. Annalen der Physik, 109(8/9/10/11/12/13/14/15/16): 113-148. https://doi.org/10.1002/andp.18341090802
|
Bhartia, R., Beegle, L. W., DeFlores, L., et al., 2021. Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews, 217(4): 58. https://doi.org/10.1007/s11214-021-00812-z
|
Bockelée-Morvan, D., Filacchione, G., Altwegg, K., et al., 2019. AMBITION: Comet Nucleus Cryogenic Sample Return (White Paper for ESA's Voyage 2050 Programme). Experimental Astronomy, 2022: 1-52.
|
Boston, P. J., Ivanov, M. V., McKay, C. P., 1992. On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars. Icarus, 95(2): 300-308. https://doi.org/10.1016/0019-1035(92)90045-9
|
Brearley, A. J., 2021. Nanophase Iron Carbides in Fine-Grained Rims in CM2 Carbonaceous Chondrites: Formation of Organic Material by Fischer-Tropsch Catalysis in the Solar Nebula. Meteoritics & Planetary Science, 56(1): 108-126. https://doi.org/10.1111/maps.13537
|
Brown, P. G., Hildebrand, A. R., Zolensky, M. E., et al., 2000. The Fall, Recovery, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite. Science, 290(5490): 320-325. https://doi.org/10.1126/science.290.5490.320
|
Busemann, H., Young, A. F., et al., 2006. Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites. Science, 312(5774): 727-730. https://doi.org/10.1126/science.1123878
|
Callahan, M. P., Smith, K. E., Cleaves, H. J., et al., 2011. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 108(34): 13995-13998. https://doi.org/10.1073/pnas.1106493108
|
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al., 2010. Water Ice and Organics on the Surface of the Asteroid 24 Themis. Nature, 464: 1320-1321. https://doi.org/10.1038/nature09029
|
Capaccioni, F., Coradini, A., Filacchione, G., et al., 2015. The Organic-Rich Surface of Comet 67P/Churyumov-Gerasimenko as Seen by VIRTIS/Rosetta. Science, 347(6220): 389.
|
Caselli, P., Ceccarelli, C., 2012. Our Astrochemical Heritage. The Astronomy and Astrophysics Review, 20(1): 56. https://doi.org/10.1007/s00159-012-0056-x
|
Chan, Q. H. S., Stephant, A., Franchi, I. A., et al., 2021. Organic Matter and Water from Asteroid Itokawa. Scientific Reports, 11(1): 5125. https://doi.org/10.1038/s41598-021-84517-x
|
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al., 2018. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals. Science Advances, 4(1): eaao3521. https://doi.org/10.1126/sciadv.aao3521
|
Chyba, C., Sagan, C., 1992. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life. Nature, 355: 125-132. https://doi.org/10.1038/355125a0
|
Clark, R. N., Brown, R. H., Jaumann, R., et al., 2005. Compositional Maps of Saturn's Moon Phoebe from Imaging Spectroscopy. Nature, 435(7038): 66-69. https://doi.org/10.1038/nature03558
|
Clemett, S. J., Sandford, S. A., Nakamura-Messenger, K., et al., 2010. Complex Aromatic Hydrocarbons in Stardust Samples Collected from Comet 81P/Wild 2. Meteoritics & Planetary Science, 45(5): 701-722. https://doi.org/10.1111/j.1945-5100.2010.01062.x
|
Cloutis, E., Hudon, P., Hiroi, T., et al., 2012. Spectral Reflectance Properties of Carbonaceous Chondrites: 3. CR Chondrites. Icarus, 217(2): 389-407.
|
Cody, G. D., Alexander, C. M. O., David Kilcoyne, A. L., et al., 2008. Unraveling the Chemical History of the Solar System as Recorded in Extraterrestrial Organic Matter. Proceedings of the International Astronomical Union, 4(S251): 277-284. https://doi.org/10.1017/s1743921308021741
|
Cody, G. D., Alexander, C. M. O., Tera, F., 2002. Solid-State (1H and 13C) Nuclear Magnetic Resonance Spectroscopy of Insoluble Organic Residue in the Murchison Meteorite: A Self-Consistent Quantitative Analysis. Geochimica et Cosmochimica Acta, 66(10): 1851-1865. https://doi.org/10.1016/S0016-7037(01)00888-2
|
Cooper, G. W., Onwo, W. M., Cronin, J. R., 1992. Alkyl Phosphonic Acids and Sulfonic Acids in the Murchison Meteorite. Geochimica et Cosmochimica Acta, 56(11): 4109-4115. https://doi.org/10.1016/0016-7037(92)90023-C
|
Cooper, G. W., Thiemens, M. H., Jackson, T. L., et al., 1997. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids. Science, 277(5329): 1072-1074. https://doi.org/10.1126/science.277.5329.1072
|
Coustenis, A., Salama, A., Schulz, B., et al., 2003. Titan's Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus, 161(2): 383-403. https://doi.org/10.1016/S0019-1035(02)00028-3
|
Coustenis, A., Taylor, F., 1999. Titan: The Earth-Like Moon. World Scientific, Singapore
|
Cronin, J. R., Cooper, G. W., Pizzarello, S., 1995. Characteristics and Formation of Amino Acids and Hydroxy Acids of the Murchison Meteorite. Advances in Space Research, 15(3): 91-97. https://doi.org/10.1016/S0273-1177(99)80068-4
|
Cronin, J. R., Gandy, W. E., Pizzarello, S., 1981. Amino Acids of the Murchison Meteorite. Geochimica et Cosmochimica Acta, 50(11): 2419-2427.
|
Cronin, J. R., Pizzarello, S., 1986. Amino Acids of the Murchison Meteorite. Ⅲ. Seven Carbon Acyclic Primary Α-Amino Alkanoic Acids1. Geochimica et Cosmochimica Acta, 50(11): 2419-2427. https://doi.org/10.1016/0016-7037(86)90024-4
|
Cronin, J. R., Pizzarello, S., Frye, J. S., 1987. 13C NMR Spectroscopy of the Insoluble Carbon of Carbonaceous Chondrites. Geochimica et Cosmochimica Acta, 51: 299-303. https://doi.org/10.1016/0016-7037(87)90242-0
|
Cronin, J. R., Pizzarello, S., Yuen, G. U., 1985. Amino Acids of the Murchison Meteorite: Ⅱ. Five Carbon Acyclic Primary Β-, Γ-, and Δ-Amino Alkanoic Acids. Geochimica et Cosmochimica Acta, 49(11): 2259-2265. https://doi.org/10.1016/0016-7037(85)90226-1
|
Cruikshank, D. P., Brown, R. H., 1987. Organic Matter on Asteroid 130 Elektra. Science, 238(4824): 183-184. https://doi.org/10.1126/science.238.4824.183
|
Cruikshank, D. P., Grundy, W. M., DeMeo, F. E., et al., 2015. The Surface Compositions of Pluto and Charon. Icarus, 246: 82-92. https://doi.org/10.1016/j.icarus.2014.05.023.
|
Cruikshank, D. P., Materese, C. K., Pendleton, Y. J., et al., 2019. Prebiotic Chemistry of Pluto. Astrobiology, 19(7): 831-848. doi: 10.1089/ast.2018.1927
|
Cruikshank, D. P., Wegryn, E., Dalle Ore, C. M., et al., 2008. Hydrocarbons on Saturn's Satellites Iapetus and Phoebe. Icarus, 193(2): 334-343. https://doi.org/10.1016/j.icarus.2007.04.036
|
Dartois, E., Engrand, C., Brunetto, R., et al., 2013. Ultra Carbonaceous Antarctic Micrometeorites, Probing the Solar System beyond the Nitrogen Snow-Line. Icarus, 224(1): 243-252. https://doi.org/10.1016/j.icarus.2013.03.002
|
Dartois, E., Engrand, C., Duprat, J., et al., 2018. Dome C Ultracarbonaceous Antarctic Micrometeorites. Infrared and Raman Fingerprints. Astronomy & Astrophysics, 609: A65. https://doi.org/10.1051/0004-6361/201731322
|
de Gregorio, B. T., Stroud, R. M., Nittler, L. R., et al., 2010. Isotopic and Chemical Variation of Organic Nanoglobules in Primitive Meteorites. Lunar Planet. Sci., 41.
|
de Gregorio, B. T., Stroud, R. M., Nittler, L. R., et al., 2013. Isotopic and Chemical Variation of Organic Nanoglobules in Primitive Meteorites. Meteoritics & Planetary Science, 48(5): 904-928. https://doi.org/10.1111/maps.12109
|
de Sanctis, M. C., Ammannito, E., Raponi, A., et al., 2015. Ammoniated Phyllosilicates with a Likely Outer Solar System Origin on (1) Ceres. Nature, 528: 241-244. https://doi.org/10.1038/nature16172
|
Dominguez, G., McLeod, A. S., Gainsforth, Z., et al., 2014. Nanoscale Infrared Spectroscopy as a Non- Destructive Probe of Extraterrestrial Samples. Nature Communications, 5: 5445. https://doi.org/10.1038/ncomms6445
|
Duprat, J., Dobrică, E., Engrand, C., et al., 2010. Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow. Science, 328(5979): 742-745. https://doi.org/10.1126/science.1184832
|
Ehrenfreund, P., Charnley, S. B., 2000. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and Astrophysics, 38: 427-483. https://doi.org/10.1146/annurev.astro.38.1.427
|
Eigenbrode, J. L., Summons, R. E., Steele, A., et al., 2018. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science, 360(6393): 1096-1101. https://doi.org/10.1126/science.aas9185
|
Elsila, J. E., Aponte, J. C., McLain, H. L., et al., 2024. Soluble Organic Compounds and Cyanide in Apollo 17 Lunar Samples: Origins and Curation Effects. Journal of Geophysical Research: Planets, 129(4): e2023JE008133. https://doi.org/10.1029/2023je008133
|
Elsila, J. E., Glavin, D. P., Dworkin, J. P., 2009. Cometary Glycine Detected in Samples Returned by Stardust. Meteoritics & Planetary Science, 44(9): 1323-1330. https://doi.org/10.1111/j.1945-5100.2009.tb01224.x
|
Farley, K. A., Williford, K. H., Stack, K. M., et al., 2020. Mars 2020 Mission Overview. Space Science Reviews, 216(8): 142. https://doi.org/10.1007/s11214-020-00762-y
|
Flynn, G. J., Keller, L. P., Feser, M., et al., 2003. The Origin of Organic Matter in the Solar System: Evidence from the Interplanetary Dust Particles. Geochimica et Cosmochimica Acta, 67(24): 4791-4806. https://doi.org/10.1016/j.gca.2003.09.001
|
Formisano, V., Atreya, S., Encrenaz, T., et al., 2004. Detection of Methane in the Atmosphere of Mars. Science, 306(5702): 1758-1761. https://doi.org/10.1126/science.1101732
|
Fray, N., Bardyn, A., Cottin, H., et al., 2016. High- Molecular-Weight Organic Matter in the Particles of Comet 67P/Churyumov-Gerasimenko. Nature, 538: 72-74. https://doi.org/10.1038/nature19320
|
Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al., 2015. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research Planets, 120(3): 495-514. https://doi.org/10.1002/2014JE004737
|
Garvie, L. A. J., Baumgardner, G., Buseck, P. R., 2008. Scanning Electron Microscopical and Cross Sectional Analysis of Extraterrestrial Carbonaceous Nanoglobules. Meteoritics & Planetary Science, 43(5): 899-903. https://doi.org/10.1111/j.1945-5100.2008.tb01088.x
|
Gilmour, I., 2003. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites. Treatise on Geochemistry. Elsevier, Amsterdam, 269-290. https://doi.org/10.1016/b0-08-043751-6/01146-4
|
Glavin, D. P., Alexander, C. M. O., Aponte, J. C., et al., 2018. The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies. Primitive Meteorites and Asteroids. Elsevier, Amsterdam, 205-271.
|
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al., 2015. Cometary Science. Organic Compounds on Comet 67P/Churyumov-Gerasimenko Revealed by COSAC Mass Spectrometry. Science, 349(6247): aab0689. https://doi.org/10.1126/science.aab0689
|
Golden, D. C., Ming, D. W., Schwandt, C. S., et al., 2001. A Simple Inorganic Process for Formation of Carbonates, Magnetite, and Sulfides in Martian Meteorite ALH84001. American Mineralogist, 86(3): 370-375. https://doi.org/10.2138/am-2001-2-321
|
Hansen, C. S., Peeters, E., Cami, J., et al., 2022. Open Questions on Carbon-Based Molecules in Space. Communications Chemistry, 5: 94. https://doi.org/10.1038/s42004-022-00714-3
|
Hao, J. H., Glein, C. R., Huang, F., et al., 2022. Abundant Phosphorus Expected for Possible Life in Enceladus's Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(39): e2201388119. https://doi.org/10.1073/pnas.2201388119
|
Hayatsu, R., Studier, M. H., Anders, E., 1971. Origin of Organic Matter in Early Solar System—Ⅳ. Amino Acids: Confirmation of Catalytic Synthesis by Mass Spectrometry. Geochimica et Cosmochimica Acta, 35(9): 939-951. https://doi.org/10.1016/0016-7037(71)90007-X
|
Heger, M. L., 1922. The Spectra of Certain Class B Stars in the Regions 5630A‒6680A and 3280A‒3380A. Revista de Saúde Pública, 38(6): 780-786.
|
Imanaka, H., Khare, B. N., Elsila, J. E., et al., 2004. Laboratory Experiments of Titan Tholin Formed in Cold Plasma at Various Pressures: Implications for Nitrogen-Containing Polycyclic Aromatic Compounds in Titan Haze. Icarus, 168(2): 344-366. https://doi.org/10.1016/j.icarus.2003.12.014
|
Jaumann, R., Schmitz, N., Ho, T. M., et al., 2019. Images from the Surface of Asteroid Ryugu Show Rocks Similar to Carbonaceous Chondrite Meteorites. Science, 365(6455): 817-820. https://doi.org/10.1126/science.aaw8627
|
Jungclaus, G. A., Yuen, G. U., Moore, C. B., et al., 1976. Evidence for the Presence of Low Molecular Weight Alcohols and Carbonyl Compounds in the Murchison Meteorite. Meteoritics, 11(3): 231-237. https://doi.org/10.1111/j.1945-5100.1976.tb00324.x
|
Kebukawa, Y., Yesiltas, M., Glotch, T. D., 2024. Analytical Techniques for Identification and Characterization of Extraterrestrial Organic Matter. Elements, 20(1): 38-44. https://doi.org/10.2138/gselements.20.1.38
|
Keller, L. P., Messenger, S., Flynn, G. J., et al., 2004. The Nature of Molecular Cloud Material in Interplanetary Dust. Geochimica et Cosmochimica Acta, 68(11): 2577-2589. https://doi.org/10.1016/j.gca.2003.10.044
|
Kerridge, J. F., 1985. Carbon, Hydrogen and Nitrogen in Carbonaceous Chondrites: Abundances and Isotopic Compositions in Bulk Samples. Geochimica et Cosmochimica Acta, 49(8): 1707-1714. https://doi.org/10.1016/0016-7037(85)90141-3
|
Kitazato, K., Milliken, R. E., Iwata, T., et al., 2019. The Surface Composition of Asteroid 162173 Ryugu from Hayabusa2 Near-Infrared Spectroscopy. Science, 364(6437): 272-275. https://doi.org/10.1126/science.aav7432
|
Klima, R. L., Denevi, B. W., Ernst, C. M., et al., 2018. Global Distribution and Spectral Properties of Low- Reflectance Material on Mercury. Geophysical Research Letters, 45(7): 2945-2953. https://doi.org/10.1002/2018gl077544
|
Kress, M. E., McKay, C. P., 2004. Formation of Methane in Comet Impacts: Implications for Earth, Mars, and Titan. Icarus, 168(2): 475-483. https://doi.org/10.1016/j.icarus.2003.10.013
|
Kvenvolden, K., Lawless, J., Pering, K., et al., 1970. Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite. Nature, 228(5275): 923-926. https://doi.org/10.1038/228923a0
|
Kwok, S., 2011. Organic Compounds in the Solar System. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9783527637034
|
Kwok, S., 2016. Complex Organics in Space from Solar System to Distant Galaxies. The Astronomy and Astrophysics Review, 24(1): 8. https://doi.org/10.1007/s00159-016-0093-y
|
Kwok, S., 2019. Organics in the Solar System. Research in Astronomy and Astrophysics, 19(4): 49. https://doi.org/10.1088/1674-4527/19/4/49
|
Kwok, S., 2022. The Mystery of Unidentified Infrared Emission Bands. Astrophysics and Space Science, 367(2): 16. https://doi.org/10.1007/s10509-022-04045-6
|
Lauretta, D. S., Balram-Knutson, S. S., Beshore, E., et al., 2017. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Science Reviews, 212(1): 925-984. https://doi.org/10.1007/s11214-017-0405-1
|
Le Gall, A., Malaska, M. J., Lorenz, R. D., et al., 2016. Composition, Seasonal Change, and Bathymetry of Ligeia Mare, Titan, Derived from Its Microwave Thermal Emission. Journal of Geophysical Research (Planets), 121(2): 233-251. https://doi.org/10.1002/2015JE004920
|
Licandro, J., Campins, H., Kelley, M., et al., 2011. (65) Cybele: Detection of Small Silicate Grains, Water-Ice, and Organics. Astronomy & Astrophysics, 525: A34. https://doi.org/10.1051/0004-6361/201015339
|
Lin, W., Li, Y. L., Wang, G. H., et al., 2019. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
|
Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
|
Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. NanoSIMS Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389
|
Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492
|
Lorenz, R. D., Kraal, E., Asphaug, E., et al., 2003. The Seas of Titan. EOS, Transactions American Geophysical Union, 84(14): 125-132.
|
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., et al., 2008. Titan's Inventory of Organic Surface Materials. Geophysical Research Letters, 35(2): L02206. https://doi.org/10.1029/2007gl032118
|
Love, S. G., Brownlee, D. E., 1993. A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust. Science, 262(5133): 550-553. https://doi.org/10.1126/science.262.5133.550
|
Margulis, L., Mazur, P., Barghoorn, E. S., et al., 1979. The Viking Mission: Implications for Life on Mars. Journal of Molecular Evolution, 14(1/2/3): 223-232. https://doi.org/10.1007/BF01732380
|
Martins, Z., Chan, Q. H. S., Bonal, L., et al., 2020. Organic Matter in the Solar System—Implications for Future On-Site and Sample Return Missions. Space Science Reviews, 216: 54. doi: 10.1007/s11214-020-00679-6
|
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al., 2014. Ice Chemistry on Outer Solar System Bodies: Carboxylic Acids, Nitriles, and Urea Detected in Refractory Residues Produced from the UV Photolysis of N2: CH4: CO Containing Ices. Astrophys, 788(2): 111. https://doi.org/10.1088/0004-637X/788/2/111
|
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al., 2015. Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and Co-Containing Ices. The Astrophysical Journal, 812(2): 10. https://doi.org/10.1088/0004-637X/812/2/150
|
Matrajt, G., Messenger, S., Brownlee, D., et al., 2012. Diverse Forms of Primordial Organic Matter Identified in Interplanetary Dust Particles. Meteoritics & Planetary Science, 47(4): 525-549. https://doi.org/10.1111/j.1945-5100.2011.01310.x
|
Max, M. D., Clifford, S. M., 2000. The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust. Journal of Geophysical Research: Planets, 105(E2): 4165-4171. https://doi.org/10.1029/1999je001119
|
McGuire, B. A., Burkhardt, A. M., Kalenskii, S., et al., 2018. Detection of the Aromatic Molecule Benzonitrile (c-C6H5CN) in the Interstellar Medium. Science, 359(6372): 202-205. https://doi.org/10.1126/science.aao4890
|
McKay, C. P., Smith, H. D., 2005. Possibilities for Methanogenic Life in Liquid Methane on the Surface of Titan. Icarus, 178(1): 274-276. https://doi.org/10.1016/j.icarus.2005.05.018
|
McKay, D. S., 1997. No 'Nanofossils' in Martian Meteorite. Nature, 390(6659): 455-456. https://doi.org/10.1038/37257-c1
|
McKay, D. S., Gibson, E. K. Jr, Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924
|
Messenger, S., 2000. Identification of Molecular-Cloud Material in Interplanetary Dust Particles. Nature, 404: 968-971. https://doi.org/10.1038/35010053
|
Messenger, S., Nakamura-Messenger, K., 2015. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust. Proceedings of the International Astronomical Union, 11(A29B): 426. https://doi.org/10.1017/s1743921316005718
|
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al., 1996. Evidence for Life on Earth before 3, 800 Million Years Ago. Nature, 384(6604): 55-59. https://doi.org/10.1038/384055a0
|
Mumma, M. J., Charnley, S. B., 2011. The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage. Annual Review of Astronomy and Astrophysics, 49: 471-524. https://doi.org/10.1146/annurev-astro-081309-130811
|
Nagy, B., Meinschein, W. G., Hennessy, D. J., 1961. Mass Spectroscopic Analysis of the Orgueil Meteorite: Evidence for Biogenic Hydrocarbons. Annals of the New York Academy of Sciences, 93(2): 27-35. https://doi.org/10.1111/j.1749-6632.1961.tb30508.x
|
Nakamura, T., Noguchi, T., Tanaka, M., et al., 2011. Itokawa Dust Particles: A Direct Link between S-Type Asteroids and Ordinary Chondrites. Science, 333(6046): 1113-1116. https://doi.org/10.1126/science.1207758
|
Naraoka, H., Takano, Y., Dworkin, J. P., et al., 2023. Soluble Organic Molecules in Samples of the Carbonaceous Asteroid (162173) Ryugu. Science, 379(6634): eabn9033. https://doi.org/10.1126/science.abn9033
|
Oba, Y., Koga, T., Takano, Y., et al., 2023. Uracil in the Carbonaceous Asteroid (162173) Ryugu. Nature Communications, 14(1): 1292. https://doi.org/10.1038/s41467-023-36904-3
|
Öberg, K. I., Guzmán, V. V., Furuya, K., et al., 2015. The Comet-Like Composition of a Protoplanetary Disk as Revealed by Complex Cyanides. Nature, 520(7546): 198-201. https://doi.org/10.1038/nature14276
|
Okazaki, R., Marty, B., Busemann, H., et al., 2023. Noble Gases and Nitrogen in Samples of Asteroid Ryugu Record Its Volatile Sources and Recent Surface Evolution. Science, 379(6634): eabo0431. https://doi.org/10.1126/science.abo0431
|
Okazaki, R., Sawada, H., Yamanouchi, S., et al., 2017. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu. Space Science Reviews, 208(1): 107-124. https://doi.org/10.1007/s11214-016-0289-5
|
Ouyang, Z. Y., 1994. Astrochemistry. Advance in Earth Sciences, 9(2): 70 (in Chinese).
|
Ouyang, Z. Y., Xiao, F. G., 2011. Major Scientific Issues Involved in Mars Exploration. Spacecraft Environment Engineering, 28(3): 205-217 (in Chinese with English abstract).
|
Parker, E. T., Chan, Q. H. S., Glavin, D. P., et al., 2022. Non-Protein Amino Acids Identified in Carbon-Rich Hayabusa Particles. Meteoritics & Planetary Science, 57(4): 776-793. https://doi.org/10.1111/maps.13794
|
Peplowski, P. N., Lawrence, D. J., Evans, L. G., et al., 2015. Constraints on the Abundance of Carbon in Near-Surface Materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 108: 98-107. https://doi.org/10.1016/j.pss.2015.01.008
|
Pierazzo, E., Chyba, C. F., 1999. Amino Acid Survival in Large Cometary Impacts. Meteoritics & Planetary Science, 34(6): 909-918. https://doi.org/10.1111/j.1945-5100.1999.tb01409.x
|
Pierazzo, E., Chyba, C. F., 2002. Cometary Delivery of Biogenic Elements to Europa. Icarus, 157(1): 120-127. https://doi.org/10.1006/icar.2001.6812
|
Pizzarello, S., Cronin, J. R., 2000. Non-Racemic Amino Acids in the Murray and Murchison Meteorites. Geochimica et Cosmochimica Acta, 64(2): 329-338. https://doi.org/10.1016/S0016-7037(99)00280-X
|
Pizzarello, S., Shock, E., 2010. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story ahead of Biochemistry. Cold Spring Harbor Perspectives in Biology, 2(3): a002105. https://doi.org/10.1101/cshperspect.a002105
|
Pizzarello, S., Zolensky, M., Turk, K. A., 2003. Nonracemic Isovaline in the Murchison Meteorite: Chiral Distribution and Mineral Association. Geochimica et Cosmochimica Acta, 67(8): 1589-1595. https://doi.org/10.1016/S0016-7037(02)01283-8
|
Pollock, G. E., Cheng, C. N., Cronin, S. E., et al., 1975. Stereoisomers of Isovaline in the Murchison Meteorite. Geochimica et Cosmochimica Acta, 39(11): 1571-1573. https://doi.org/10.1016/0016-7037(75)90159-3
|
Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558: 564-568. https://doi.org/10.1038/s41586-018-0246-4
|
Postberg, F., Sekine, Y., Klenner, F., et al., 2023. Detection of Phosphates Originating from Enceladus's Ocean. Nature, 618(7965): 489-493. https://doi.org/10.1038/s41586-023-05987-9
|
Rivkin, A. S., Emery, J. P., 2010. Detection of Ice and Organics on an Asteroidal Surface. Nature, 464(7293): 1322-1323. https://doi.org/10.1038/nature09028
|
Rojas, J., Duprat, J., Engrand, C., et al., 2021. The Micrometeorite Flux at Dome C (Antarctica), Monitoring the Accretion of Extraterrestrial Dust on Earth. Earth and Planetary Science Letters, 560: 116794. https://doi.org/10.1016/j.epsl.2021.116794
|
Russell, R. W., Soifer, B. T., Willner, S. P., 1977. The 4 to 8 Micron Spectrum of NGC 7027. The Astrophysical Journal, 217: L149. https://doi.org/10.1086/182559
|
Safi, E., Telling, J., Parnell, J., et al., 2019. Aeolian Abrasion of Rocks as a Mechanism to Produce Methane in the Martian Atmosphere. Scientific Reports, 9(1): 8229. https://doi.org/10.1038/s41598-019-44616-2
|
Sagan, C., Khare, B. N., 1979. Tholins: Organic Chemistry of Interstellar Grains and Gas. Nature, 277: 102-107. https://doi.org/10.1038/277102a0
|
Sakai, N., Yamamoto, S., 2013. Warm Carbon-Chain Chemistry. Chemical Reviews, 113(12): 8981-9015. doi: 10.1021/cr4001308
|
Sandford, S. A., Aléon, J., et al., 2006. Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft. Science, 314(5806): 1720-1724. https://doi.org/10.1126/science.1135841
|
Scheller, E. L., Hollis, J. R., Cardarelli, E. L., et al., 2022. Aqueous Alteration Processes in Jezero Crater, Mars-Implications for Organic Geochemistry. Science, 378(6624): 1105-1110. https://doi.org/10.1126/science.abo5204
|
Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R. D., et al., 2010. High Molecular Diversity of Extraterrestrial Organic Matter in Murchison Meteorite Revealed 40 Years after Its Fall. Proceedings of the National Academy of Sciences of the United States of America, 107(7): 2763-2768. https://doi.org/10.1073/pnas.0912157107
|
Schmitt-Kopplin, P., Matzka, M., Ruf, A., et al., 2023. Complex Carbonaceous Matter in Tissint Martian Meteorites Give Insights into the Diversity of Organic Geochemistry on Mars. Science Advances, 9(2): eadd6439. https://doi.org/10.1126/sciadv.add6439
|
Sephton, M. A., 2002. Organic Compounds in Carbonaceous Meteorites. Natural Product Reports, 19(3): 292-311. https://doi.org/10.1039/B103775G.
|
Sephton, M. A., Botta, O., 2008. Extraterrestrial Organic Matter and the Detection of Life. Space Science Reviews, 135(1): 25-35. https://doi.org/10.1007/ s11214-007-9171-9 doi: 10.1007/s11214-007-9171-9
|
Sephton, M. A., Love, G. D., Watson, J. S., et al., 2004. Hydropyrolysis of Insoluble Carbonaceous Matter in the Murchison Meteorite: New Insights into Its Macromolecular Structure. Geochimica et Cosmochimica Acta, 68(6): 1385-1393. https://doi.org/10.1016/j.gca.2003.08.019.
|
Sephton, M. A., Wright, I. P., Gilmour, I., et al., 2002. High Molecular Weight Organic Matter in Martian Meteorites. Planetary and Space Science, 50(7/8): 711-716. https://doi.org/10.1016/S0032-0633(02)00053-3
|
Simkus, D. N., Aponte, J. C., Elsila, J. E., et al., 2019. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life, 9(2): 47. https://doi.org/10.3390/life9020047
|
Starkey, N. A., Franchi, I. A., Alexander, C. M. O., 2013. A Raman Spectroscopic Study of Organic Matter in Interplanetary Dust Particles and Meteorites Using Multiple Wavelength Laser Excitation. Meteoritics & Planetary Science, 48(10): 1800-1822. https://doi.org/10.1111/maps.12196
|
Steele, A., Fries, M. D., Amundsen, H. E. F., et al., 2007. Comprehensive Imaging and Raman Spectroscopy of Carbonate Globules from Martian Meteorite ALH 84001 and a Terrestrial Analogue from Svalbard. Meteoritics & Planetary Science, 42(9): 1549-1566. https://doi.org/10.1111/j.1945-5100.2007.tb00590.x
|
Steele, A., McCubbin, F. M., Fries, M., et al., 2012. A Reduced Organic Carbon Component in Martian Basalts. Science, 337(6091): 212-215. https://doi.org/10.1126/science.1220715
|
Steele, A., McCubbin, F. M., Fries, M. D., 2016. The Provenance, Formation, and Implications of Reduced Carbon Phases in Martian Meteorites. Meteoritics & Planetary Science, 51(11): 2203-2225. https://doi.org/10.1111/maps.12670
|
Stofan, E. R., Elachi, C., Lunine, J. I., et al., 2007. The Lakes of Titan. Nature, 445(7123): 61-64. https://doi.org/10.1038/nature05438
|
Tachibana, S., Sawada, H., Okazaki, R., et al., 2022. Pebbles and Sand on Asteroid (162173) Ryugu: In Situ Observation and Particles Returned to Earth. Science, 375(6584): 1011-1016. doi: 10.1126/science.abj8624
|
Takir, D., Hibbitts, C. A., Miller, K., 2023. Spectral Characterization of Organics and Carbonates in Carbonaceous Chondrites: Implications for Bennu Returned Samples. Lunar and Planetary Science Conference, 20230018328
|
Tang, X., Li, J. H., 2021. Transmission Electron Microscopy: New Advances and Applications for Earth and Planetary Sciences. Earth Science, 46(4): 1374-1415 (in Chinese with English abstract).
|
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al., 2000. Elongated Prismatic Magnetite Crystals in ALH84001 Carbonate Globules: Potential Martian Magnetofossils. Geochimica et Cosmochimica Acta, 64(23): 4049-4081. https://doi.org/10.1016/S0016-7037(00)00481-6
|
Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., et al., 2002. Magnetofossils from Ancient Mars: A Robust Biosignature in the Martian Meteorite ALH84001. Applied and Environmental Microbiology, 68(8): 3663-3672. https://doi.org/10.1128/aem.68.8.3663-3672.2002
|
Thomas-Keprta, K. L., Clemett, S. J., Messenger, S., et al., 2014. Organic Matter on the Earth's Moon. Geochimica et Cosmochimica Acta, 134: 1-15. https://doi.org/10.1016/j.gca.2014.02.047
|
Townes, C. H., 1957.16. Microwave and Radio-Frequency Resonance Lines of Interest to Radio Astronomy. Symposium-International Astronomical Union, 4: 92-103. https://doi.org/10.1017/s0074180900048919
|
Trigo-Rodríguez, J., 2005. Comets Ⅱ. Meteoritics & Planetary Science, 40: 1749-1750. https://doi.org/10.1111/J.1945-5100.2005.TB00142.X
|
Tsuda, Y., Yoshikawa, M., Abe, M., et al., 2013. System Design of the Hayabusa 2—Asteroid Sample Return Mission to 1999 JU3. Acta Astronautica, 91: 356-362. https://doi.org/10.1016/j.actaastro.2013.06.028
|
van Schmus, W. R., Wood, J. A., 1967. A Chemical- Petrologic Classification for the Chondritic Meteorites. Geochimica et Cosmochimica Acta, 31(5): 747-765. https://doi.org/10.1016/S0016-7037(67)80030-9
|
Waite, J. H. Jr, Combi, M. R., Ip, W. H., et al., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 311(5766): 1419-1422. https://doi.org/10.1126/science.1121290
|
Waite, J. H. Jr, Young, D. T., Cravens, T. E., et al., 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316(5826): 870-875. https://doi.org/10.1126/science.1139727
|
Watanabe, S. I., Tsuda, Y., Yoshikawa, M., et al., 2017. Hayabusa2 Mission Overview. Space Science Reviews, 208(1): 3-16. https://doi.org/10.1007/s11214-017-0377-1
|
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al., 2015. Mars Methane Detection and Variability at Gale Crater. Science, 347(6220): 415-417. https://doi.org/10.1126/science.1261713
|
Weinreb, S., Barrett, A. H., Meeks, M. L., et al., 1963. Radio Observations of OH in the Interstellar Medium. Nature, 200: 829-831. https://doi.org/10.1038/200829a0
|
Weiss, B. P., Yung, Y. L., Nealson, K. H., 2000. Atmospheric Energy for Subsurface Life on Mars? Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1395-1399. https://doi.org/10.1073/pnas.030538097
|
Williams, D. M., Gaidos, E., 2008. Detecting the Glint of Starlight on the Oceans of Distant Planets. Icarus, 195(2): 927-937. https://doi.org/10.1016/j.icarus.2008.01.002
|
Wong, A. S., Atreya, S. K., Encrenaz, T., 2003. Chemical Markers of Possible Hot Spots on Mars. Journal of Geophysical Research: Planets, 108(E4): 148-227. https://doi.org/10.1029/2002je002003
|
Xiao, L., 2022. What Geological Habitability Evolution did Mars Undergo?. Earth Science, 47(10): 3792-3793 (in Chinese).
|
Xu, R., Xiao, Z. Y., Wang, Y. C., et al., 2024. Less than One Weight Percent of Graphite on the Surface of Mercury. Nature Astronomy, 8: 280-289. https://doi.org/10.1038/s41550-023-02169-5
|
Yabuta, H., Noguchi, T., Itoh, S., et al., 2017. Formation of an Ultracarbonaceous Antarctic Micrometeorite through Minimal Aqueous Alteration in a Small Porous Icy Body. Geochimica et Cosmochimica Acta, 214: 172-190. https://doi.org/10.1016/j.gca.2017.06.047
|
Yada, T., Abe, M., Okada, T., et al., 2022. Preliminary Analysis of the Hayabusa2 Samples Returned from C-Type Asteroid Ryugu. Nature Astronomy, 6: 214-220. https://doi.org/10.1038/s41550-021-01550-6
|
Yang, Y. L., Green, J., Pontoppidan, K., et al., 2022. CORINOS. I. JWST/MIRI Spectroscopy and Imaging of a Class 0 Protostar IRAS 15398-3359. The Astrophysical Journal Letters, 941(1): L13.
|
Yoshimura, Y., Satoh, T., Enya, K., et al., 2021. Development of the Life-Signature Detection Microscope (LDM) for in Situ Imaging of Organic Compounds Including Living Cells on Mars. 43rd COSPAR Scientific Assembly, 43: 1956.
|
Yokoyama, T., Nagashima, K., Nakai, I., et al., 2022. Samples Returned from the Asteroid Ryugu are Similar to Ivuna-Type Carbonaceous Meteorites. Science, 379(6634): eabn7850. https://doi.org/10.1126/science.abn7850
|
Yuen, G. U., Kvenvolden, K. A., 1973. Monocarboxylic Acids in Murray and Murchison Carbonaceous Meteorites. Nature, 246: 301-303. https://doi.org/10.1038/246301a0
|
Zhang, J. A., Paige, D. A., 2009. Cold-Trapped Organic Compounds at the Poles of the Moon and Mercury: Implications for Origins. Geophysical Research Letters, 36(16): L16203. https://doi.org/10.1029/2009gl038614
|
Zolensky, M. E., Gooding, J. L., 1986. Aqueous Alteration on Carbonaceous-Chondrite Parent Bodies as Inferred from Weathering of Meteorites in Antarctica. Lpi Contributions, 21(4): 39.
|
林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391.
|
林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11) : 4108-4113. doi: 10.3799/dqkx.2022.883
|
欧阳自远, 1994. 天体化学. 地球科学进展, 9(2): 70.
|
欧阳自远, 肖福根, 2011. 火星探测的主要科学问题. 航天器环境工程, 28(3) : 205-217.
|
唐旭, 李金华, 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374-1415. doi: 10.3799/dqkx.2020.387
|
肖龙, 2022. 火星的地质环境及宜居性演变历史如何?. 地球科学, 47(10): 3792-3793. doi: 10.3799/dqkx.2022.811
|