• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Li Haoxuan, Ding Lin, Wang Chao, 2024. Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks. Earth Science, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072
    Citation: Li Haoxuan, Ding Lin, Wang Chao, 2024. Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks. Earth Science, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072

    Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks

    doi: 10.3799/dqkx.2024.072
    • Received Date: 2024-03-03
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • Understanding the evolution of continental crust is crucial for comprehending the Earth's structure and exploring the development of plate tectonics and orogenic belts. In convergent plate margins, large-scale igneous rocks are generated, and their geochemical features are closely related to their formation depth. Consequently, these rocks are widely used in reconstructing crustal thickness and interpreting paleoaltitudes in orogenic belts. In this paper it reviews the establishment and development of methods that utilize geochemical information to investigate crustal thickness. It evaluates the advantages, disadvantages, and applications of various methods, and summarizes their use in different orogenic belts and their role in paleoaltitude reconstruction. As a complement to quantitative paleoaltimetric techniques, the geochemical approach provides more continuous reflections of crustal thickness over time. Combined with rapidly accumulating geochemical databases, this method can offer deeper insights into paleoaltitude estimates, and the tectonic evolution of orogenic belts, and effectively promote the development of Earth system science.

       

    • loading
    • Airy, G. B., 1855. On the Computation of the Effect of the Attraction of Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys. Philosophical Transactions of the Royal Society of London, 16(2): 42-43. https://doi.org/10.1098/rstl.1855.0003
      Alexander, E. W., Wielicki, M. M., Harrison, T. M., et al., 2019. Hf and Nd Isotopic Constraints on Pre- and Syn-Collisional Crustal Thickness of Southern Tibet. Journal of Geophysical Research: Solid Earth, 124(11): 11038-11054. https://doi.org/10.1029/2019jb017696
      Balica, C., Ducea, M. N., Gehrels, G. E., et al., 2020. A Zircon Petrochronologic View on Granitoids and Continental Evolution. Earth and Planetary Science Letters, 531: 116005. https://doi.org/10.1016/j.epsl.2019.116005
      Barth, A. P., Wooden, J. L., Jacobson, C. E., et al., 2013. Detrital Zircon as a Proxy for Tracking the Magmatic Arc System: The California Arc Example. Geology, 41(2): 223-226. https://doi.org/10.1130/g33619.1
      Brudner, A., Jiang, H. H., Chu, X., et al., 2022. Crustal Thickness of the Grenville Orogen: A Mesoproterozoic Tibet? Geology, 50(4): 402-406. 10.1130/g49591.1
      Carrapa, B., DeCelles, P. G., Ducea, M. N., et al., 2022. Estimates of Paleo-Crustal Thickness at Cerro Aconcagua (Southern Central Andes) from Detrital Proxy-Records: Implications for Models of Continental Arc Evolution. Earth and Planetary Science Letters, 585: 117526. https://doi.org/10.1016/j.epsl.2022.117526
      Cassel, E. J., Breecker, D. O., Henry, C. D., et al., 2014. Profile of a Paleo-Orogen: High Topography across the Present-Day Basin and Range from 40 to 23 Ma. Geology, 42(11): 1007-1010. https://doi.org/10.1130/g35924.1
      Chai, X. H., Zeng, Y. C., Xu, J. F., et al., 2023. Crustal Thickening and Uplift of the Northwestern Lhasa Terrane, Central Tibetan Plateau: Insights from Mid-Eocene Volcanic Rocks in the Gerze Region. Lithos, 446: 107157. https://doi.org/10.1016/j.lithos.2023.107157
      Chapman, J. B., Ducea, M. N., Decells, P. G., et al., 2015. Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y: An Example from the North American Cordillera. Geology, 43(10): 919-922. https://doi.org/10.1130/g36996.1
      Chapman, J. B., Gehrels, G. E., Ducea, M. N., et al., 2016. A New Method for Estimating Parent Rock Trace Element Concentrations from Zircon. Chemical Geology, 439: 59-70. https://doi.org/10.1016/j.chemgeo.2016.06.014
      Chen, Z., 2023. Europium Anomalies in Detrital Zircons Reveal the Crustal Thickness Evolution of South China in Early Neoproterozoic. Acta Geochimica, 42(4): 739-746. https://doi.org/10.1007/s11631-023-00605-x
      Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7: 43-46. https://doi.org/10.1038/ngeo2028
      Chiaradia, M., 2015. Crustal Thickness Control on Sr/Y Signatures of Recent Arc Magmas: An Earth Scale Perspective. Scientific Reports, 5: 8115. https://doi.org/10.1038/srep08115
      Chiaradia, M., 2021. Zinc Systematics Quantify Crustal Thickness Control on Fractionating Assemblages of Arc Magmas. Scientific Reports, 11(1): 14667. https://doi.org/10.1038/s41598-021-94290-6
      Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685. 10.1038/srep00685
      Chung, S. L., Chu, M. F., Ji, J., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48. 10.1016/j.tecto.2009.08.008
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      DePaolo, D. J., Harrison, T. M., Wielicki, M., et al., 2019. Geochemical Evidence for Thin Syn-Collision Crust and Major Crustal Thickening between 45 and 32 Ma at the Southern Margin of Tibet. Gondwana Research, 73: 123-135. https://doi.org/10.1016/j.gr.2019.03.011
      Dickinson, W. R., 1975. Potash-Depth (K-h) Relations in Continental Margin and Intra-Oceanic Magmatic Arcs. Geology, 3(2): 53. https://doi.org/10.1130/0091-7613(1975)353:pkricm>2.0.co;2 doi: 10.1130/0091-7613(1975)353:pkricm>2.0.co;2
      Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4
      Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 382: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      Ding, L., Xu, Q., Zhang, L. Y., et al., 2009. Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau. Quaternary Sciences, 29(1): 1-12(in Chinese with English abstract).
      Ducea, M. N., Paterson, S. R., DeCelles, P. G., 2015b. High-Volume Magmatic Events in Subduction Systems. Elements, 11(2): 99-104. https://doi.org/10.2113/gselements.11.2.99
      Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015a. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      Farner, M. J., Lee, C. T A., 2017. Effects of Crustal Thickness on Magmatic Differentiation in Subduction Zone Volcanism: A Global Study. Earth and Planetary Science Letters, 470: 96-107. https://doi.org/10.1016/j.epsl.2017.04.025
      Haschke, M., Siebel, W., Günther, A., et al., 2002. Repeated Crustal Thickening and Recycling during the Andean Orogeny in North Chile (21°-26°S). Journal of Geophysical Research: Solid Earth, 107(B1): ECV 6-1-ECV 6-18. 10.1029/2001jb000328
      Hawkesworth, C., Dhuime, B., Pietranik, A., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167: 229-248. https://doi.org/10.1144/0016-76492009-072
      Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45: 169-198. https://doi.org/10.1146/annurev-earth-063016-020525
      Hawkesworth, C. J., Vollmer, R., 1979. Crustal Contamination versus Enriched Mantle: 143Nd/144Nd and 87Sr/86Sr Evidence from the Italian Volcanics. Contributions to Mineralogy and Petrology, 69(2): 151-165. https://doi.org/10.1007/bf00371858
      Hildebrand, R. S., 2013. Mesozoic Assembly of the North American Cordillera. Geological Society of America. U. S. A. . 10.1130/spe495
      Hildebrand, R. S., Whalen, J. B., 2014. Arc and Slab-Failure Magmatism in Cordilleran Batholiths Ⅰ: The Cretaceous Coastal Batholith of Peru and Its Role in South American Orogenesis and Hemispheric Subduction Flip. Geoscience Canada, 41(3): 255-282. doi: 10.12789/geocanj.2014.41.047
      Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365
      Hoke, G. D., Giambiagi, L. B., Garzione, C. N., et al., 2014. Neogene Paleoelevation of Intermontane Basins in a Narrow, Compressional Mountain Range, Southern Central Andes of Argentina. Earth and Planetary Science Letters, 406: 153-164. https://doi.org/10.1016/j.epsl.2014.08.032
      House, M. A., Wernicke, B. P., Farley, K. A., 2001. Paleo-Geomorphology of the Sierra Nevada, California, from (U-Th)/He Ages in Apatite. American Journal of Science, 301: 77-102. https://doi.org/10.2475/ajs.301.2.77
      Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7(1): 7058. https://doi.org/10.1038/s41598-017-07849-7
      Hu, F. Y., Wu, F. Y., Chapman, J. B., et al., 2020. Quantitatively Tracking the Elevation of the Tibetan Plateau since the Cretaceous: Insights from Whole-Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 47(15): e2020GL089202. https://doi.org/10.1029/2020gl089202
      Ibarra, D. E., Dai, J. G., Gao, Y., et al., 2023. High-Elevation Tibetan Plateau before India-Eurasia Collision Recorded by Triple Oxygen Isotopes. Nature Geoscience, 16(9): 810-815. https://doi.org/10.1038/s41561-023-01243-x
      Johnston, S. T., 2008. The Cordilleran Ribbon Continent of North America. Annual Review of Earth and Planetary Sciences, 36: 495-530. https://doi.org/10.1146/annurev.earth.36.031207.124331
      Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303-311.
      Keller, C. B., Schoene, B., Barboni, M., et al., 2015. Volcanic-Plutonic Parity and the Differentiation of the Continental Crust. Nature, 523: 301-307. https://doi.org/10.1038/nature14584
      Kusky, T., Wang, L., 2022. Growth of Continental Crust in Intra-Oceanic and Continental-Margin Arc Systems: Analogs for Archean Systems. Science China: Earth Sciences, 65(9): 1615-1645. https://doi.org/10.1007/s11430-021-9964-1
      Laske, G., Masters, G., Ma, Z., et al., 2013. Update on CRUST1.0-A1-Degree Global Model of Earth's Crust. Geophysical Research, 15: 2658.
      Lee, C. T A., Luffi, P., Le Roux, V., et al., 2010. The Redox State of Arc Mantle Using Zn/Fe Systematics. Nature, 468: 681-685. https://doi.org/10.1038/nature09617
      Lee, C. T A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation: From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3-4): 370-387. 10.1016/j.epsl.2007.09.025
      Liu, S. G., Rudnick, R. L., Liu, W. R., et al., 2023. Copper Isotope Evidence for Sulfide Fractionation and Lower Crustal Foundering in Making Continental Crust. Science Advances, 9(36): eadg6995. https://doi.org/10.1126/sciadv.adg6995
      Luffi, P., Ducea, M. N., 2022. Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data. Reviews of Geophysics, 60(2): e2021RG000753. https://doi.org/10.1029/2021rg000753
      Mamani, M., Worner, G., Sempere, T., 2010. Geochemical Variations in Igneous Rocks of the Central Andean Orocline (13°S to 18°S): Tracing Crustal Thickening and Magma Generation through Time and Space. Geological Society of America Bulletin, 122(1-2): 162-182. https://doi.org/10.1130/b26538.1
      Mantle, G. W., Collins, W. J., 2008. Quantifying Crustal Thickness Variations in Evolving Orogens: Correlation between Arc Basalt Composition and Moho Depth. Geology, 36(1): 87. https://doi.org/10.1130/g24095a.1
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. 10.1016/0009-2541(94)00140-4
      McKenzie, N. R., Smye, A. J., Hegde, V. S., et al., 2018. Continental Growth Histories Revealed by Detrital Zircon Trace Elements: A Case Study from India. Geology, 46(3): 275-278. https://doi.org/10.1130/g39973.1
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
      Paterson, S. R., Ducea, M. N., 2015. Arc Magmatic Tempos: Gathering the Evidence. Elements, 11(2): 91-98. https://doi.org/10.2113/gselements.11.2.91
      Plank, T., Langmuir, C. H., 1988. An Evaluation of the Global Variations in the Major Element Chemistry of Arc Basalts. Earth and Planetary Science Letters, 90(4): 349-370. https://doi.org/10.1016/0012-821x(88)90135-5
      Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
      Roberts, N. M. W., Hernández-Montenegro, J. D., Palin, R. M., 2024. Garnet Stability during Crustal Melting: Implications for Chemical Mohometry and Secular Change in Arc Magmatism and Continent Formation. Chemical Geology, 659: 122142. https://doi.org/10.1016/j.chemgeo.2024.122142
      Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439: 677-681. https://doi.org/10.1038/nature04506.
      Rowley, D. B., Pierrehumbert, R. T., Currie, B. S., 2001. A New Approach to Stable Isotope-Based Paleoaltimetry: Implications for Paleoaltimetry and Paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188(1-2): 253-268. https://doi.org/10.1016/s0012-821x(01)00324-7
      Stirling, J. E., Denyszyn, S. W., Loucks, R. R., et al., 2023. Formation of Lower Arc Crust by Magmatic Underplating Revealed by High-Precision Geochronology. Geology, 51(12): 1101-1105. https://doi.org/10.1130/G51375.1
      Sun, W. D., Xie, G. Z., Zhang, L. P., et al., 2021. The Onset of Plate Subduction and the Evolution of Continental Crust. Acta Geologica Sinica, 95(1): 32-41(in Chinese with English abstract).
      Sundell, K., Laskowski, A., Kapp, P., et al., 2021. Jurassic to Neogene Quantitative Crustal Thickness Estimates in Southern Tibet. GSA Today, 31(6): 4-10. https://doi.org/10.1130/gsatg461a.1
      Sundell, K. E., George, S. W. M., Carrapa, B., et al., 2022. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophysical Research Letters, 49(3): e96443. https://doi.org/10.1029/2021gl096443
      Sundell, K. E., Laskowski, A. K., Howlett, C., et al., 2024. Episodic Late Cretaceous to Neogene Crustal Thickness Variation in Southern Tibet. Terra Nova, 36(1): 45-52. https://doi.org/10.1111/ter.12689
      Tang, M., Chu, X., Hao, J. H., et al., 2021a. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
      Tang, M., Ji, W. Q., Chu, X., et al., 2021b. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76-80. https://doi.org/10.1130/g47745.1
      Triantafyllou, A., Ducea, M. N., Jepson, G., et al., 2023. Europium Anomalies in Detrital Zircons Record Major Transitions in Earth Geodynamics at 2.5 Ga and 0.9 Ga. Geology, 51(2): 141-145. https://doi.org/10.1130/g050720.1
      Wang, W., Jing, L. Z., Zeng, L. S., et al., 2022. Crustal Thickness and Paleo-Elevation in SE Tibet during the Eocene-Oligocene: Insights from Whole-Rock La/Yb Ratios. Tectonophysics, 839: 229523. https://doi.org/10.1016/j.tecto.2022.229523
      Wells, M. L., Hoisch, T. D., Cruz-Uribe, A. M., et al., 2012. Geodynamics of Synconvergent Extension and Tectonic Mode Switching: Constraints from the Sevier-Laramide Orogen. Tectonics, 31(1). 10.1029/2011tc002913
      Xiong, Z. Y., Ding, L., Xie, J., 2019. Carbonate Clumped Isotope(Δ47) Thermometry and Its Application in Paleoelevation Reconstruction. Chinese Science Bulletin, 64(16): 1722-1737(in Chinese). doi: 10.1360/N972019-00032
      Xiong, Z. Y., Liu, X. H., Ding, L., et al., 2022. The Rise and Demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944. https://doi.org/10.1126/sciadv.abj0944
      Yakymchuk, C., Holder, R. M., Kendrick, J., et al., 2023. Europium Anomalies in Zircon: A Signal of Crustal Depth? Earth and Planetary Science Letters, 622: 118405. 10.1016/j.epsl.2023.118405
      Yang, J. M., Cao, W. R., Yuan, X. P., et al., 2023. Erosion-Driven Isostatic Flow and Crustal Diapirism: Analytical and Numerical Models with Implications for the Evolution of the Eastern Himalayan Syntaxis, Southern Tibet. Tectonics, 42(8): e2022TC007717. https://doi.org/10.1029/2022tc007717
      Zeng, Y. C., Ducea, M. N., Xu, J. F., et al., 2021. Negligible Surface Uplift Following Foundering of Thickened Central Tibetan Lower Crust. Geology, 49(1): 45-50. https://doi.org/10.1130/g48142.1
      Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
      Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28(in Chinese with English abstract).
      Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
      Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. https://doi.org/10.1002/2016jb013508
      丁林, 许强, 张利云, 等, 2009. 青藏高原河流氧同位素区域变化特征与高度预测模型建立. 第四纪研究, 29(1): 1-12.
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
      孙卫东, 谢国治, 张丽鹏, 等, 2021. 板块俯冲起始与大陆地壳演化. 地质学报, 95(1): 32-41.
      熊中玉, 丁林, 谢静, 2019. 碳酸盐耦合同位素(Δ47)温度计及其在古高度重建中的应用. 科学通报, 64(16): 1722-1737.
      郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
      郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (451) PDF downloads(130) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return