Citation: | Kong Weilin, Wu Chunhao, Cui Peng, Zhang Yifan, Li Yusheng, 2025. The Relationship between Regional Stress Field and Rock Landslide: A Case Study of the 2022 Luding Ms6.8 Earthquake. Earth Science, 50(1): 299-310. doi: 10.3799/dqkx.2024.074 |
Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)1031178: fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2
|
Ai, N. S., Zuo, F. Y., 1985. Statistical Analysis of Landslide Sliding Direction in Dongxiang Area of Gansu Province. Journal of Lanzhou University, 21(3): 133 (in Chinese).
|
Chai, C. P., Delorey, A. A., Maceira, M., et al., 2021. A 3D Full Stress Tensor Model for Oklahoma. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021113. https://doi.org/10.1029/2020JB021113
|
Chen, H. K., Tang, H. M., Ai, N. S., 1997. Neotectonic Strese Field and Its Effects on the Dominant Sliding Direction of Landslides in the Three Gorges Reservoir Region. Geographical Research, 16(4): 16-23 (in Chinese with English abstract).
|
Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
|
Clair, J. St., Moon, S., Holbrook, W. S., et al., 2015. Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering. Science, 350(6260): 534-538. https://doi.org/10.1126/science.aab2210
|
Cui, P., 2014. Progress and Prospects in Research on Mountain Hazards in China. Progress in Geography, 33(2): 145-152 (in Chinese with English abstract).
|
Cui, P., Ge, Y. G., Li, S. J., et al., 2022. Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway. Engineering Geology, 309: 106837. https://doi.org/10.1016/j.enggeo.2022.106837
|
Cui, P., Wei, F. Q., He, S. M., et al., 2008. Mountain Disasters Induced by the Earthquake of May 12 in Wenchuan and the Disasters Mitigation. Mountain Research, 26(3): 280-282 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2008.03.006
|
Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of MS 6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504-1516 (in Chinese with English abstract).
|
Huang, R. Q., Lin, F., Chen, D. J., et al., 2001. Formation Mechanism of Unloading Fracture Zone of High Slopes and Its Engineering Behaviors. Journal of Engineering Geology, 9(3): 227-232 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2001.03.001
|
Iverson, R. M., Reid, M. E., 1992. Gravity-Driven Groundwater Flow and Slope Failure Potential: Elastic Effective-Stress Model. Water Resources Research, 28(3): 925-938. https://doi.org/10.1029/91wr02694
|
Jaeger, J. C., Cook, N. G., Zimmerman, R., 2007. Fundamentals of Rock Mechanics. John Wiley & Sons, New Jersey.
|
Kong, W. L., Huang, L. Y., Yao, R., et al., 2021. Review of Stress Field Studies in Sichuan-Yunnan Region. Progress in Geophysics, 36(5): 1853-1864 (in Chinese with English abstract).
|
Li, G. K., Moon, S., 2021. Topographic Stress Control on Bedrock Landslide Size. Nature Geoscience, 14: 307-313. https://doi.org/10.1038/s41561-021-00739-8
|
Li, X. R., Gao, K., Feng, Y., et al., 2022. 3D Geomechanical Modeling of the Xianshuihe Fault Zone, SE Tibetan Plateau: Implications for Seismic Hazard Assessment. Tectonophysics, 839: 229546. https://doi.org/10.1016/j.tecto.2022.229546
|
Ma, Z. J., Zhang, J. S., Wang, Y. P., 1998. The 3-D Deformational Movement Episodes and Neotectonic Domains in the Qinghai-Tibet Plateau. Acta Geologica Sinica, 72(3): 211-227 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1998.03.003
|
Martel, S. J., 2016. Effects of Small-Amplitude Periodic Topography on Combined Stresses Due to Gravity and Tectonics. International Journal of Rock Mechanics and Mining Sciences, 89: 1-13. https://doi.org/10.1016/j.ijrmms.2016.07.026
|
Moon, S., Perron, J. T., Martel, S. J., et al., 2020. Present-Day Stress Field Influences Bedrock Fracture Openness Deep into the Subsurface. Geophysical Research Letters, 47(23): e2020GL090581. https://doi.org/10.1029/2020gl090581
|
Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract).
|
Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052
|
Tang, H. M., Chen, H. K., Zhu, X. Y., et al., 2000. Neotectonic Stress Field and Its Impact on Macro Development of Landslides in Chongqing Area of the Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 19(3): 352-356 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.03.021
|
Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608 (in Chinese with English abstract).
|
Tang, R., Xu, Q., Fan, X. M., 2021. Influence of Tectonic Stress Field on Formation and Evolution of Sub-Horizontal Translational Landslides in Sichuan Basin. Journal of Engineering Geology, 29(5): 1437-1451 (in Chinese with English abstract).
|
Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268-281. https://doi.org/10.1016/j.epsl.2018.11.005
|
Wang, K. W., Zhang, F., Lin, D. C., et al., 2007. Relation between Neotectonism and Landslides in the Three Gorges Reservoir Area. Global Geology, 26(1): 26-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2007.01.005
|
Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013
|
Wu, C. H., Cui, P., Li, Y. S., et al., 2018. Seismogenic Fault and Topography Control on the Spatial Patterns of Landslides Triggered by the 2017 Jiuzhaigou Earthquake. Journal of Mountain Science, 15(4): 793-807. https://doi.org/10.1007/s11629-017-4761-9
|
Wu, C. H., Cui, P., Li, Y. S., et al., 2021. Tectonic Damage of Crustal Rock Mass around Active Faults and Its Conceptual Model at Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 29(2): 289-306 (in Chinese with English abstract).
|
Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441-461. https://doi.org/10.1007/s10346-013-0404-6
|
Xu, J. P., Hu, H. T., Zhang, A. S., et al., 1999. Study on Statistical Characteristics of Physical and Mechanical Parameters of Slope Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 18(4): 14-18 (in Chinese with English abstract).
|
Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract).
|
Yamagishi, H., Iwahashi, J., 2007. Comparison between the Two Triggered Landslides in Mid-Niigata, Japan by July 13 Heavy Rainfall and October 23 Intensive Earthquakes in 2004. Landslides, 4(4): 389-397. https://doi.org/10.1007/s10346-007-0093-0
|
Yi, S. J., Wu, C. H., Cui, P., et al., 2022. Cause of the Baige Landslides: Long-Term Cumulative Coupled Effect of Tectonic Action and Surface Erosion. Lithosphere, 2021(Special 7): 7784535. https://doi.org/10.2113/2022/7784535
|
Yin, L., Zhou, B. G., Ren, Z. K., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425-436 (in Chinese with English abstract).
|
Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of High-Speed Giant Landslide in Yigong in the Bomi, Tigbet. Hydrogeology and Engineering Geology, 27(4): 8-11 (in Chinese with English abstract).
|
Zhang, J. W., Zhao, Z. Q., Yan, Y. N., et al., 2021. Lithium and Its Isotopes Behavior during Incipient Weathering of Granite in the Eastern Tibetan Plateau, China. Chemical Geology, 559: 119969. https://doi.org/10.1016/j.chemgeo.2020.119969
|
Zhang, Y. F., Wu, C. H., Li, Y. S., et al., 2024. Quantitative Analysis of Damage Characteristics of Coseismic Rock Mass: A Case of 2022 Ms 6.8 Luding Earthquake. Journal of Engineering Geology, 32(3): 1020-1034 (in Chinese with English abstract).
|
Zhang, Y. S., Ren, S. S., Guo, C. B., et al., 2019. Research on Engineering Geology Related with Active Fault Zone. Acta Geologica Sinica, 93(4): 763-775 (in Chinese with English abstract).
|
Zhang, Z. Y., Wang, S. T., Wang, L. S., 2002. Principle of Engineering Geology Analysis. Geological Publishing House, Beijing, 355 (in Chinese).
|
艾南山, 左发源, 1985. 甘肃东乡地区滑坡滑移方向统计分析. 兰州大学学报, 21(3): 133.
|
陈洪凯, 唐红梅, 艾南山, 1997. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响. 地理研究, 16(4): 16-23.
|
崔鹏, 2014. 中国山地灾害研究进展与未来应关注的科学问题. 地理科学进展, 33(2): 145-152.
|
崔鹏, 韦方强, 何思明, 等, 2008.5·12汶川地震诱发的山地灾害及减灾措施. 山地学报, 26(3): 280-282.
|
范宣梅, 王欣, 戴岚欣, 等, 2022. 2022年Ms 6.8级泸定地震诱发地质灾害特征与空间分布规律研究. 工程地质学报, 30(5): 1504-1516.
|
黄润秋, 林峰, 陈德基, 等, 2001. 岩质高边坡卸荷带形成及其工程性状研究. 工程地质学报, 9(3): 227-232.
|
孔维林, 黄禄渊, 姚瑞, 等, 2021. 川滇地区应力场研究进展. 地球物理学进展, 36(5): 1853-1864.
|
马宗晋, 张家声, 汪一鹏, 1998. 青藏高原三维变形运动学的时段划分和新构造分区. 地质学报, 72(3): 211-227.
|
彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈‒岩体松动圈‒地表冻融圈‒工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114.
|
唐红梅, 陈洪凯, 祝晓寅, 等, 2000. 重庆库区新构造应力场及其对滑坡宏观活动规律的控制. 岩石力学与工程学报, 19(3): 352-356.
|
唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461
|
唐然, 许强, 范宣梅, 2021. 构造应力场对平推式滑坡形成演化的影响. 工程地质学报, 29(5): 1437-1451.
|
王孔伟, 张帆, 林东成, 等, 2007. 三峡地区新构造活动与滑坡分布关系. 世界地质, 26(1): 26-32.
|
伍纯昊, 崔鹏, 李渝生, 等, 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论. 工程地质学报, 29(2): 289-306.
|
徐建平, 胡厚田, 张安松, 等, 1999. 边坡岩体物理力学参数的统计特征研究. 岩石力学与工程学报, 18(4): 14-18.
|
许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡‒堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551.
|
尹力, 周本刚, 任治坤, 等, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定Ms6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
|
张亦凡, 伍纯昊, 李渝生, 等, 2024. 同震岩体损伤特征的定量分析——以2022年泸定Ms6.8地震为例. 工程地质学报, 32(3): 1020-1034.
|
张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763-775.
|
张倬元, 王士天, 王兰生, 2002. 工程地质分析原理. 北京: 地质出版社, 355.
|