Citation: | Luo Dongliang, Liu Jia, Chen Fangfang, Li Shizhen, 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081. doi: 10.3799/dqkx.2024.075 |
Andersland, O. B., Ladanyi, B., 2003. An Introduction to Frozen Ground Engineering. John Wiley & Sons, Inc., Hoboren, 1-363.
|
Associate Committee on Geotechnical Research, 1988. Glossary of Permafrost and Related Ground-Ice Terms. National Research Council Canada, Technical Memorandum No. 142, Ottawa.
|
Armstrong McKay, D. I., Staal, A., Abrams, J. F., et al., 2022. Exceeding 1.5 ℃ Global Warming could Trigger Multiple Climate Tipping Points. Science, 377(6611): eabn7950. https://doi.org/10.1126/science.abn7950
|
Ballantyne, C. K., 2018. Periglacial Geomorphology. Wiley Black, Hoboken, 1-454.
|
Bartsch, A., Leibman, M., Strozzi, T., et al., 2019. Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sensing, 11(16): 1865. https://doi.org/10.3390/rs11161865
|
Bernard-Grand'Maison, C., Pollard, W., 2018. An Estimate of Ice Wedge Volume for a High Arctic Polar Desert Environment, Fosheim Peninsula, Ellesmere Island. The Cryosphere, 12(11): 3589-3604. https://doi.org/10.5194/tc-12-3589-2018
|
Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4
|
Bockheim, J. G., 2015. Cryopedology. Springer International Publishing, New York. https://doi.org/10.1007/978-3-319-08485-5.
|
Bockheim, J. G., Hinkel, K. M., 2010. Characteristics and Significance of the Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain, Alaska. Arctic, 58(4): 406-417.
|
Bonnaventure, P. P., Lamoureux, S. F., 2013. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Progress in Physical Geography: Earth and Environment, 37(3): 352-376. https://doi.org/10.1177/0309133313478314
|
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., et al., 1997. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. National Snow and Ice Data Center, Colorado.
|
Burn, C. R., 1997. Cryostratigraphy, Paleogeography, and Climate Change during the Early Holocene Warm Interval, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 34(7): 912-925. https://doi.org/10.1139/e17-076
|
Burn, C. R., 1998. The Active Layer: Two Contrasting Definitions. Permafrost and Periglacial Processes, 9(4): 411-416. https://doi.org/10.1002/(sici)1099-1530(199810/12)9: 4411: aid-ppp292>3.0.co;2-6 doi: 10.1002/(sici)1099-1530(199810/12)9:4411:aid-ppp292>3.0.co;2-6
|
Burn, C. R., Michel, F. A., 1988. Evidence for Recent Temperature-Induced Water Migration into Permafrost from the Tritium Content of Ground Ice near Mayo, Yukon Territory, Canada. Canadian Journal of Earth Sciences, 25(6): 909-915. https://doi.org/10.1139/e88-087
|
Cai, L., Lee, H. N., Aas, K. S., et al., 2020. Projecting Circum-Arctic Excess-Ground-Ice Melt with a Sub-Grid Representation in the Community Land Model. The Cryosphere, 14(12): 4611-4626. https://doi.org/10.5194/tc-14-4611-2020
|
Castagner, A., Brenning, A., Gruber, S., et al., 2023. Vertical Distribution of Excess Ice in Icy Sediments and Its Statistical Estimation from Geotechnical Data (Tuktoyaktuk Coastlands and Anderson Plain, Northwest Territories). Arctic Science, 9(2): 483-496. https://doi.org/10.1139/as-2021-0041
|
Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209 (in Chinese with English abstract).
|
Cheng, G., 1983. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Regions Science and Technology, 8(1): 57-66. https://doi.org/10.1016/0165-232X(83)90017-4
|
Cheng, G. D., 1981. One-Way Accumulation Effect of Unfrozen Water in Seasonal Freezing and Thawing Layers. Chinese Science Bulletin, 26(23): 1448-1451 (in Chinese). doi: 10.1360/csb1981-26-23-1448
|
Cheng, G. D., 1982. The Formation of Thick Layers of Underground Ice. Science in China (Series B: Chemistry), (3): 281-288 (in Chinese).
|
Cheng, G. D., 1984. Problems on Zonation of High-Altitude Permafrost. Acta Geographica Sinica, 39(2): 185-193 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1984.02.006
|
Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2
|
Cheng, G. D., Zhao, L., Li, R., et al., 2019. Characteristics, Changes and Impacts of Permafrost in Qinghai-Tibet Plateau. Chinese Science Bulletin, 64(27): 2783-2795 (in Chinese). doi: 10.1360/TB-2019-0191
|
Cheng, J., Zhang, X. J., Tian, M. Z., et al., 2006. Ice-Wedge Casts Discovered in the Source Area of Yellow River, Northeast Tibetan Plateau and Their Paleoclimatic Implications. Quaternary Sciences, 26(1): 92-98 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2006.01.012
|
Couture, N. J., Pollard, W. H., 2017. A Model for Quantifying Ground-Ice Volume, Yukon Coast, Western Arctic Canada. Permafrost and Periglacial Processes, 28(3): 534-542. https://doi.org/10.1002/ppp.1952
|
Dobinski, W., 2011. Permafrost. Earth-Science Reviews, 108(3/4): 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007
|
Dredge, L. A., Kerr, D. E., Wolfe, S. A., 1999. Surficial Materials and Related Ground Ice Conditions, Slave Province, N. W. T., Canada. Canadian Journal of Earth Sciences, 36(7): 1227-1238. https://doi.org/10.1139/e98-087
|
Esper, J., Torbenson, M., Büntgen, U., 2024. 2023 Summer Warmth Unparalleled over the Past 2, 000 Years. Nature, 631(8019): 94-97. https://doi.org/10.1038/s41586-024-07512-y
|
Fan, X. W., Lin, Z. J., Gao, Z. Y., et al., 2021. Cryostructures and Ground Ice Content in Ice-Rich Permafrost Area of the Qinghai-Tibet Plateau with Computed Tomography Scanning. Journal of Mountain Science, 18(5): 1208-1221. https://doi.org/10.1007/s11629-020-6197-x
|
Farquharson, L. M., Mann, D. H., Grosse, G., et al., 2016. Spatial Distribution of Thermokarst Terrain in Arctic Alaska. Geomorphology, 273: 116-133. https://doi.org/10.1016/j.geomorph.2016.08.007
|
French, H., Shur, Y., 2010. The Principles of Cryostratigraphy. Earth-Science Reviews, 101(3/4): 190-206. https://doi.org/10.1016/j.earscirev.2010.04.002
|
French, H. M., 2018. The Periglacial Environment. John Wiley & Sons Ltd., Hoboken, 1-515.
|
Gilbert, G. L., Kanevskiy, M., Murton, J. B., 2016. Recent Advances (2008-2015) in the Study of Ground Ice and Cryostratigraphy. Permafrost and Periglacial Processes, 27(4): 377-389. https://doi.org/10.1002/ppp.1912
|
Gruber, S., 2020. Ground Subsidence and Heave over Permafrost: Hourly Time Series Reveal Interannual, Seasonal and Shorter-Term Movement Caused by Freezing, Thawing and Water Movement. The Cryosphere, 14(4): 1437-1447. https://doi.org/10.5194/tc-14-1437-2020
|
Gubin, S. V., Lupachev, A. V., 2008. Soil Formation and the Underlying Permafrost. Eurasian Soil Science, 41(6): 574-585. https://doi.org/10.1134/S1064229308060021
|
Halla, C., Blöthe, J. H., Tapia Baldis, C., et al., 2021. Ice Content and Interannual Water Storage Changes of an Active Rock Glacier in the Dry Andes of Argentina. The Cryosphere, 15(2): 1187-1213. https://doi.org/10.5194/tc-15-1187-2021
|
Harris, C., Lewkowicz, A. G., 2000. An Analysis of the Stability of Thawing Slopes, Ellesmere Island, Nunavut, Canada. Canadian Geotechnical Journal, 37(2): 449-462. https://doi.org/10.1139/t99-118
|
Harris, S. A., 2001. Twenty Years of Data on Climate-Permafrost-Active Layer Variations at the Lower Limit of Alpine Permafrost, Marmot Basin, Jasper National Park, Canada. Geografiska Annaler: Series A, Physical Geography, 83(1/2): 1-13. https://doi.org/10.1111/j.0435-3676.2001.00140.x
|
Harris, S. A., Brouchkov, A., Cheng, G., 2018. Geocryology: An Introduction to Frozen Ground. CRC Press, Oxford.
|
Hayes, S., Lim, M., Whalen, D., et al., 2022. The Role of Massive Ice and Exposed Headwall Properties on Retrogressive Thaw Slump Activity. Journal of Geophysical Research: Earth Surface, 127(11): e2022JF006602. https://doi.org/10.1029/2022jf006602
|
He, R. X., Jin, H. J., Vanderberghe, J., et al., 2023. Permafrost and Paleoenvironments on the Northeastern Qinghai-Tibet Plateau, China during the Local Last Permafrost Maximum. International Geology Review, 65(15): 2332-2347. https://doi.org/10.1080/00206814.2022.2137860
|
Heginbottom, J. A., 2002. Permafrost Mapping: A Review. Progress in Physical Geography, 26(4): 623-642. doi: 10.1191/0309133302pp355ra
|
Hjort, J., Streletskiy, D., Doré, G., et al., 2022. Impacts of Permafrost Degradation on Infrastructure. Nature Reviews Earth & Environment, 3: 24-38. https://doi.org/10.1038/s43017-021-00247-8
|
Hollesen, J., Elberling, B., Jansson, P. E., 2011. Future Active Layer Dynamics and Carbon Dioxide Production from Thawing Permafrost Layers in Northeast Greenland. Global Change Biology, 17(2): 911-926. https://doi.org/10.1111/j.1365-2486.2010.02256.x
|
Holloway, J. E., Rudy, A. C. A., Lamoureux, S. F., et al., 2017. Determining the Terrain Characteristics Related to the Surface Expression of Subsurface Water Pressurization in Permafrost Landscapes Using Susceptibility Modelling. The Cryosphere, 11(3): 1403-1415. https://doi.org/10.5194/tc-11-1403-2017
|
IPCC, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge.
|
Jin, H. J., Jin, X. Y., He, R. X., et al., 2019. Evolution of Permafrost in China during the Last 20 ka. Science China Earth Sciences, 62(8): 1207-1223. https://doi.org/10.1007/s11430-018-9272-0
|
Jin, H. J., Vandenberghe, J., Luo, D. L., et al., 2020. Quaternary Permafrost in China: Framework and Discussions. Quaternary, 3(4): 32. https://doi.org/10.3390/quat3040032
|
Jin, H. J., Yu, Q. H., Wang, S. L., et al., 2008. Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming. Cold Regions Science and Technology, 53(3): 317-333. https://doi.org/10.1016/j.coldregions.2007.07.005
|
Jones, D. B., Harrison, S., Anderson, K., et al., 2019. Rock Glaciers and Mountain Hydrology: A Review. Earth-Science Reviews, 193: 66-90. https://doi.org/10.1016/j.earscirev.2019.04.001
|
Jorgenson, M. T., Kanevskiy, M., Shur, Y., et al., 2015. Role of Ground Ice Dynamics and Ecological Feedbacks in Recent Ice Wedge Degradation and Stabilization. Journal of Geophysical Research: Earth Surface, 120(11): 2280-2297. https://doi.org/10.1002/2015jf003602
|
Kanevskiy, M., Jorgenson, T., Shur, Y., et al., 2014. Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost and Periglacial Processes, 25(1): 14-34. https://doi.org/10.1002/ppp.1800
|
Kanevskiy, M., Shur, Y., Fortier, D., et al., 2011. Cryostratigraphy of Late Pleistocene Syngenetic Permafrost (Yedoma) in Northern Alaska, Itkillik River Exposure. Quaternary Research, 75(3): 584-596. https://doi.org/10.1016/j.yqres.2010.12.003
|
Kanevskiy, M., Shur, Y., Jorgenson, M. T., et al., 2013. Ground Ice in the Upper Permafrost of the Beaufort Sea Coast of Alaska. Cold Regions Science and Technology, 85: 56-70. https://doi.org/10.1016/j.coldregions.2012.08.002
|
Kanevskiy, M., Shur, Y., Jorgenson, T., et al., 2017. Degradation and Stabilization of Ice Wedges: Implications for Assessing Risk of Thermokarst in Northern Alaska. Geomorphology, 297: 20-42. https://doi.org/10.1016/j.geomorph.2017.09.001
|
Karjalainen, O., Aalto, J., Kanevskiy, M. Z., et al., 2023. High-Resolution Predictions of Ground Ice Content for the Northern Hemisphere Permafrost Region. Earth System Science Data Discuss, 1-40.
|
Karjalainen, O., Luoto, M., Aalto, J., et al., 2020. High Potential for Loss of Permafrost Landforms in a Changing Climate. Environmental Research Letters, 15(10): 104065. https://doi.org/10.1088/1748-9326/abafd5
|
Kokelj, S. V., Burn, C. R., 2005. Near-Surface Ground Ice in Sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafrost and Periglacial Processes, 16(3): 291-303. https://doi.org/10.1002/ppp.537
|
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., et al., 2017. Climate-Driven Thaw of Permafrost Preserved Glacial Landscapes, Northwestern Canada. Geology, 45(4): 371-374. https://doi.org/10.1130/G38626.1
|
Kokelj, S. V., Smith, C. A. S., Burn, C. R., 2002. Physical and Chemical Characteristics of the Active Layer and Permafrost, Herschel Island, Western Arctic Coast, Canada. Permafrost and Periglacial Processes, 13(2): 171-185. https://doi.org/10.1002/ppp.417
|
Kotler, E., Burn, C. R., 2000. Cryostratigraphy of the Klondike "Muck" Deposits, West-Central Yukon Territory. Canadian Journal of Earth Sciences, 37(6): 849-861. https://doi.org/10.1139/e00-013
|
Lacelle, D., Fisher, D. A., Verret, M., et al., 2022. Improved Prediction of the Vertical Distribution of Ground Ice in Arctic-Antarctic Permafrost Sediments. Communications Earth & Environment, 3: 31. https://doi.org/10.1038/s43247-022-00367-z
|
Lapalme, C. M., Lacelle, D., Pollard, W., et al., 2017. Cryostratigraphy and the Sublimation Unconformity in Permafrost from an Ultraxerous Environment, University Valley, McMurdo Dry Valleys of Antarctica. Permafrost and Periglacial Processes, 28(4): 649-662. https://doi.org/10.1002/ppp.1948
|
Lawrence, D. M., Slater, A. G., 2005. A Projection of Severe Near-Surface Permafrost Degradation during the 21st Century. Geophysical Research Letters, 32(24): L24401. https://doi.org/10.1029/2005gl025080
|
Lee, H. N., Swenson, S. C., Slater, A. G., et al., 2014. Effects of Excess Ground Ice on Projections of Permafrost in a Warming Climate. Environmental Research Letters, 9(12): 124006. https://doi.org/10.1088/1748-9326/9/12/124006
|
Lenton, T. M., Held, H., Kriegler, E., et al., 2008. Tipping Elements in the Earth's Climate System. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1786-1793. https://doi.org/10.1073/pnas.0705414105
|
Lenton, T. M., Rockström, J., Gaffney, O., et al., 2019. Climate Tipping Points: Too Risky to Bet against. Nature, 575: 592-595. https://doi.org/10.1038/d41586-019-03595-0
|
Lewkowicz, A. G., Clarke, S., 1998. Late-Summer Solifluction and Active Layer Depths, Fosheim Peninsula, Ellesmere Island, Canada. Proceedings of the 6th International Conference on Permafrost. Centre D'études Nordiques, Université Laval, Québec, 641-666.
|
Lewkowicz, A. G., 2007. Dynamics of Active-Layer Detachment Failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafrost and Periglacial Processes, 18(1): 89-103. https://doi.org/10.1002/ppp.578
|
Lewkowicz, A. G., Harris, C., 2005a. Frequency and Magnitude of Active-Layer Detachment Failures in Discontinuous and Continuous Permafrost, Northern Canada. Permafrost and Periglacial Processes, 16(1): 115-130. https://doi.org/10.1002/ppp.522
|
Lewkowicz, A. G., Harris, C., 2005b. Morphology and Geotechnique of Active-Layer Detachment Failures in Discontinuous and Continuous Permafrost, Northern Canada. Geomorphology, 69(1/2/3/4): 275-297. https://doi.org/10.1016/j.geomorph.2005.01.011
|
Lewkowicz, A. G., Way, R. G., 2019. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nature Communications, 10(1): 1329. https://doi.org/10.1038/s41467-019-09314-7
|
Li, D. Q., Chen, J., Meng, Q. Z., et al., 2008. Numeric Simulation of Permafrost Degradation in the Eastern Tibetan Plateau. Permafrost and Periglacial Processes, 19(1): 93-99. https://doi.org/10.1002/ppp.611
|
Li, R. W., Zhang, M. Y., Konstantinov, P., et al., 2022. Permafrost Degradation Induced Thaw Settlement Susceptibility Research and Potential Risk Analysis in the Qinghai-Tibet Plateau. Catena, 214: 106239. https://doi.org/10.1016/j.catena.2022.106239
|
Lim, M., Whalen, D., Martin, J., et al., 2020. Massive Ice Control on Permafrost Coast Erosion and Sensitivity. Geophysical Research Letters, 47(17): e2020GL087917. https://doi.org/10.1029/2020gl087917
|
Lin, Z. J., Gao, Z. Y., Fan, X. W., et al., 2020. Factors Controlling near Surface Ground-Ice Characteristics in a Region of Warm Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma, 376: 114540. https://doi.org/10.1016/j.geoderma.2020.114540
|
Liu, T., Chen, D. A., Yang, L., et al., 2023. Teleconnections among Tipping Elements in the Earth System. Nature Climate Change, 13: 67-74. https://doi.org/10.1038/s41558-022-01558-4
|
Luo, D. L., Jin, H. J., Bense, V. F., et al., 2020. Hydrothermal Processes of Near-Surface Warm Permafrost in Response to Strong Precipitation Events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma, 376: 114531. https://doi.org/10.1016/j.geoderma.2020.114531
|
Luo, D. L., Jin, H. J., He, R. X., et al., 2018a. Characteristics of Water-Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): e2018jd028298. https://doi.org/10.1029/2018jd028298
|
Luo, D. L., Jin, H. J., Jin, X. Y., et al., 2018b. Elevation-Dependent Thermal Regime and Dynamics of Frozen Ground in the Bayan Har Mountains, Northeastern Qinghai-Tibet Plateau, Southwest China. Permafrost and Periglacial Processes, 29(4): 257-270. https://doi.org/10.1002/ppp.1988
|
Luo, D. L., Jin, H. J., Lü, L. Z., et al., 2014a. Spatiotemporal Characteristics of Freezing and Thawing of the Active Layer in the Source Areas of the Yellow River (SAYR). Chinese Science Bulletin, 59(24): 3034-3045. https://doi.org/10.1007/s11434-014-0189-6
|
Luo, D. L., Jin, H. J., Marchenko, S., et al., 2014b. Distribution and Changes of Active Layer Thickness (ALT) and Soil Temperature (TTOP) in the Source Area of the Yellow River Using the GIPL Model. Science China Earth Sciences, 57(8): 1834-1845. https://doi.org/10.1007/s11430-014-4852-1
|
Luo, D. L., Jin, H. J., Wu, Q. B., et al., 2023. Research Progress and Prospect of Active Layer Thickness in Permafrost Regions under Natural State. Journal of Glaciology and Geocryology, 45(2): 558-574 (in Chinese with English abstract).
|
Luo, D. L., Wu, Q. B., Jin, H. J., et al., 2016. Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environmental Earth Sciences, 75(7): 555. https://doi.org/10.1007/s12665-015-5229-2
|
Luo, J., Niu, F. J., Lin, Z. J., et al., 2019. Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau: An Example from the Beiluhe Region. Geomorphology, 341: 79-85. https://doi.org/10.1016/j.geomorph.2019.05.020
|
Luo, J., Niu, F. J., Lin, Z. J., et al., 2022a. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the Last 50 Years. Catena, 217: 106497. https://doi.org/10.1016/j.catena.2022.106497
|
Luo, J., Niu, F. J., Lin, Z. J., et al., 2022b. Inventory and Frequency of Retrogressive Thaw Slumps in Permafrost Region of the Qinghai-Tibet Plateau. Geophysical Research Letters, 49(23): e2022GL099829. https://doi.org/10.1029/2022gl099829
|
Ma, L. J., Xiao, C. D., Kang, S. C., 2022. Characteristics and Similarities of Global Major Mountain Climate Change: A Comprehensive Interpretation of IPCC AR6 WGI Report and SROCC. Advances in Climate Change Research, 18(5): 605-621 (in Chinese with English abstract).
|
Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689
|
Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017
|
MacKay, J. R., 1995. Active Layer Changes (1968 to 1993) Following the Forest-Tundra Fire near Inuvik, N. W. T., Canada. Arctic and Alpine Research, 27(4): 323. https://doi.org/10.2307/1552025
|
Marmy, A., Salzmann, N., Scherler, M., et al., 2013. Permafrost Model Sensitivity to Seasonal Climatic Changes and Extreme Events in Mountainous Regions. Environmental Research Letters, 8(3): 035048. https://doi.org/10.1088/1748-9326/8/3/035048
|
Melvin, A. M., Larsen, P., Boehlert, B., et al., 2017. Climate Change Damages to Alaska Public Infrastructure and the Economics of Proactive Adaptation. Proceedings of the National Academy of Sciences of the United States of America, 114(2): E122-E131. https://doi.org/10.1073/pnas.1611056113
|
Mu, C. C., Shang, J. G., Zhang, T. J., et al., 2020. Acceleration of Thaw Slump during 1997-2017 in the Qilian Mountains of the Northern Qinghai-Tibetan Plateau. Landslides, 17(5): 10511062. https://doi.org/10.1007/s10346-020-01344-3
|
Murton, J. B., 2013.8. 14 Ground Ice and Cryostratigraphy. Treatise on Geomorphology. Elsevier, Amsterdam, 173-201.
|
Murton, J. B., 2022. Ground Ice. In: Shroder, J., Haritashya, U., eds., Treatise on Geomorphology. Academic Press, San Diego, 428-457.
|
Murton, J. B., French, H. M., 1994. Cryostructures in Permafrost, Tuktoyaktuk Coastlands, Western Arctic Canada. Canadian Journal of Earth Sciences, 31(4): 737-747. https://doi.org/10.1139/e94-067
|
Murton, J. B., Goslar, T., Edwards, M. E., et al., 2015. Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia. Permafrost and Periglacial Processes, 26(3): 208-288. https://doi.org/10.1002/ppp.1843
|
Murton, J. B., Waller, R. I., Hart, J. K., et al., 2004. Stratigraphy and Glaciotectonic Structures of Permafrost Deformed beneath the Northwest Margin of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, Canada. Journal of Glaciology, 50(170): 399-412. https://doi.org/10.3189/172756504781829927
|
Mutter, E. Z., Phillips, M., 2012. Active Layer Characteristics at Ten Borehole Sites in Alpine Permafrost Terrain, Switzerland. Permafrost and Periglacial Processes, 23(2): 138-151. https://doi.org/10.1002/ppp.1738
|
Niu, F. J., Luo, J., Lin, Z. J., et al., 2016. Thaw-Induced Slope Failures and Stability Analyses in Permafrost Regions of the Qinghai-Tibet Plateau, China. Landslides, 13(1): 55-65. https://doi.org/10.1007/s10346-014-0545-2
|
O'Neill, H. B., Burn, C. R., 2012. Physical and Temporal Factors Controlling the Development of Near-Surface Ground Ice at Illisarvik, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 49(9): 1096-1110. https://doi.org/10.1139/e2012-043
|
O'Neill, H. B., Wolfe, S. A., Duchesne, C., 2019. New Ground Ice Maps for Canada Using a Paleogeographic Modelling Approach. The Cryosphere, 13(3): 753-773. https://doi.org/10.5194/tc-13-753-2019
|
Pan, Z., Ma, R., Sun, Z. Y., et al., 2022. Integrated Hydrogeological and Hydrogeochemical Dataset of an Alpine Catchment in the Northern Qinghai-Tibet Plateau. Earth System Science Data, 14(5): 2147-2165. https://doi.org/10.5194/essd-14-2147-2022
|
Paquette, M., Rudy, A. C. A., Fortier, D., et al., 2020. Multi-Scale Site Evaluation of a Relict Active Layer Detachment in a High Arctic Landscape. Geomorphology, 359: 107159. https://doi.org/10.1016/j.geomorph.2020.107159
|
Paul, J. R., Kokelj, S. V., Baltzer, J. L., 2021. Spatial and Stratigraphic Variation of Near-Surface Ground Ice in Discontinuous Permafrost of the Taiga Shield. Permafrost and Periglacial Processes, 32(1): 3-18. https://doi.org/10.1002/ppp.2085
|
Ping, C. L., Jastrow, J. D., Jorgenson, M. T., et al., 2015. Permafrost Soils and Carbon Cycling. Soil, 1(1): 147-171. https://doi.org/10.5194/soil-1-147-201
|
Pollard, W. H., French, H. M., 1980. A First Approximation of the Volume of Ground Ice, Richards Island, Pleistocene Mackenzie Delta, Northwest Territories, Canada. Canadian Geotechnical Journal, 17(4): 509-516. https://doi.org/10.1139/t80-059
|
Pruessner, L., Phillips, M., Farinotti, D., et al., 2018. Near-Surface Ventilation as a Key for Modeling the Thermal Regime of Coarse Blocky Rock Glaciers. Permafrost and Periglacial Processes, 29(3): 152-163. https://doi.org/10.1002/ppp.1978
|
Qiu, G. Q., Liu, J. R., Liu, H. X., 1994. Dictionary of Geocryology. Science Press, Beijing (in Chinese).
|
Ran, Y. H., Li, X., Cheng, G. D., et al., 2022. New High-Resolution Estimates of the Permafrost Thermal State and Hydrothermal Conditions over the Northern Hemisphere. Earth System Science Data, 14(2): 865-884. https://doi.org/10.5194/essd-14-865-2022
|
Rantanen, M., Karpechko, A. Y., Lipponen, A., et al., 2022. The Arctic has Warmed nearly Four Times Faster than the Globe since 1979. Communications Earth & Environment, 3: 168. https://doi.org/10.1038/s43247-022-00498-3
|
Romanovsky, N. N., 1973. Regularities in Formation of Frost-Fissures and Development of Frost-Fissure Polygons. Biuletyn Periglacjalny, 23: 237-277.
|
Saito, K., Machiya, H., Iwahana, G., et al., 2020. Mapping Simulated Circum-Arctic Organic Carbon, Ground Ice, and Vulnerability of Ice-Rich Permafrost to Degradation. Progress in Earth and Planetary Science, 7(1): 31. https://doi.org/10.1186/s40645-020-00345-z
|
Saito, K., Machiya, H., Iwahana, G., et al., 2021. Numerical Model to Simulate Long-Term Soil Organic Carbon and Ground Ice Budget with Permafrost and Ice Sheets (SOC-ICE-V1.0). Geoscientific Model Development, 14(1): 521-542. https://doi.org/10.5194/gmd-14-521-2021
|
Scherler, M., Hauck, C., Hoelzle, M., et al., 2013. Modeled Sensitivity of Two Alpine Permafrost Sites to RCM-Based Climate Scenarios. Journal of Geophysical Research: Earth Surface, 118(2): 780-794. https://doi.org/10.1002/jgrf.20069
|
Shur, Y., 1988. The Upper Horizon of Permafrost Soils. Proceedings of Fifth International Conference on Permafrost, 1: 867-871.
|
Shur, Y., Hinkel, K. M., Nelson, F. E., 2005. The Transient Layer: Implications for Geocryology and Climate-Change Science. Permafrost and Periglacial Processes, 16(1): 5-17. https://doi.org/10.1002/ppp.518
|
Shur, Y. L., Jorgenson, M. T., 2007. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost and Periglacial Processes, 18(1): 7-19. https://doi.org/10.1002/ppp.582
|
Staub, B., Marmy, A., Hauck, C., et al., 2015. Ground Temperature Variations in a Talus Slope Influenced by Permafrost: A Comparison of Field Observations and Model Simulations. Geographica Helvetica, 70(1): 45-62. https://doi.org/10.5194/gh-70-45-2015
|
Steffen, W., Rockström, J., Richardson, K., et al., 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8252-8259. https://doi.org/10.1073/pnas.1810141115
|
Strauss, J., Laboor, S., Schirrmeister, L., et al., 2021. Circum-Arctic Map of the Yedoma Permafrost Domain. Frontiers in Earth Science, 9: 1001. https://doi.org/10.3389/feart.2021.758360
|
Streletskiy, D. A., Shiklomanov, N. I., Little, J. D., et al., 2017. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962-2015. Permafrost and Periglacial Processes, 28(3): 566-572. https://doi.org/10.1002/ppp.1918
|
Sumgin, M., Kachurin, S., Tolstkhin, N., et al., 1940. General Permafrostology. Akademiia Nauk SSSR, Leginggrad-Moscow.
|
Wang, K., Jafarov, E., Overeem, I., 2020. Sensitivity Evaluation of the Kudryavtsev Permafrost Model. Science of the Total Environment, 720: 137538. https://doi.org/10.1016/j.scitotenv.2020.137538
|
Wang, K., Jafarov, E., Overeem, I., et al., 2018a. A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions for Alaska, USA. Earth System Science Data, 10(4): 2311-2328. https://doi.org/10.5194/essd-10-2311-2018
|
Wang, S. T., Sheng, Y., Li, J., et al., 2018b. An Estimation of Ground Ice Volumes in Permafrost Layers in Northeastern Qinghai-Tibet Plateau, China. Chinese Geographical Science, 28(1): 61-73. https://doi.org/10.1007/s11769-018-0932-z
|
Wang, W. H., Wu, T. H., Zhao, L., et al., 2018c. Hydrochemical Characteristics of Ground Ice in Permafrost Regions of the Qinghai-Tibet Plateau. Science of the Total Environment, 626: 366-376. https://doi.org/10.1016/j.scitotenv.2018.01.097
|
Wang, K., Zhang, T. J., Clow, G. D., 2023. Permafrost Thermal Responses to Asymmetrical Climate Changes: An Integrated Perspective. Geophysical Research Letters, 50(5): e2022GL100327. https://doi.org/10.1029/2022gl100327
|
Williams, P. J., 1968. Ice Distribution in Permafrost Profiles. Canadian Journal of Earth Sciences, 5(6): 1381-1386. https://doi.org/10.1139/e68-136
|
Wu, Q. B., Sheng, Y., Yu, Q. H., et al., 2020. Engineering in the Rugged Permafrost Terrain on the Roof of the World under a Warming Climate. Permafrost and Periglacial Processes, 31(3): 417-428. https://doi.org/10.1002/ppp.2059
|
Wu, Q. B., Zhang, T. J., 2010. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres, 115(D9): e2009jd012974. https://doi.org/10.1029/2009jd012974
|
Xu, X. Z., Wang, J. C., Zhang, L. X., 2010. Frozen Soil Physics. Science Press, Beijing (in Chinese with English abstract).
|
Yang, S. Z., Jin, H. J., 2010. Hydrogen and Oxygen Isotope Records of Ice Wedge in Ituri River Area of Daxing'anling Mountains and Their Paleotemperature Changes. Scientia Sinica (Terrae), 40(12): 1710-1717 (in Chinese). doi: 10.1360/zd2010-40-12-1710
|
Yanovsky, V., 1933. Expedition to Pechora River to Determine the Position of the Southern Permafrost Boundary. Reports of the Committee for Permafrost Investigations, 5: 65-149.
|
Yi, S. H., Woo, M. K., Arain, M. A., 2007. Impacts of Peat and Vegetation on Permafrost Degradation under Climate Warming. Geophysical Research Letters, 34(16): L16504. https://doi.org/10.1029/2007gl030550
|
Zhang, T., Barry, R. G., Knowles, K., et al., 2008. Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere. Polar Geography, 31(1-2): 47-68. https://doi.org/10.1080/10889370802175895
|
Zhang, Z. Q., Li, M., Wang, J., et al., 2023. A Calculation Model for the Spatial Distribution and Reserves of Ground Ice: A Case Study of the Northeast China Permafrost Area. Engineering Geology, 315: 107022. https://doi.org/10.1016/j.enggeo.2023.107022
|
Zhao, L., Ding, Y. J., Liu, G. Y., et al., 2010. Estimates of the Reserves of Ground Ice in Permafrost Regions on the Tibetan Plateau. Journal of Glaciology and Geocryology, 32(1): 1-9 (in Chinese with English abstract).
|
Zhao, L., Jin, H. J., Li, C. C., et al., 2014. The Extent of Permafrost in China during the Local last Glacial Maximum (LLGM). Boreas, 43(3): 688-698. https://doi.org/10.1111/bor.12049
|
Zhou, Y. W., Qiu, G. Q., Guo, D. X., et al., 2000. Geocryology in China. Science Press, Beijing (in Chinese with English abstract).
|
Zou, D. F., Pang, Q. Q., Zhao, L., et al., 2024. Estimation of Permafrost Ground Ice to 10 m Depth on the Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 35(3): 423-434. https://doi.org/10.1002/ppp.2226
|
Zwieback, S., Meyer, F. J., 2021. Top-of-Permafrost Ground Ice Indicated by Remotely Sensed Late-Season Subsidence. The Cryosphere, 15(4): 2041-2055. https://doi.org/10.5194/tc-15-2041-2021
|
常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
|
程国栋, 1981. 季节冻结和融化层中未冻水的单向积聚效应. 科学通报, 26(23): 1448-1451.
|
程国栋, 1982. 厚层地下冰的形成过程. 中国科学(B辑: 化学), (3): 281-288.
|
程国栋, 1984. 我国高海拔多年冻土地带性规律之探讨. 地理学报, 39(2): 185-193. doi: 10.3321/j.issn:0375-5444.1984.02.006
|
程国栋, 赵林, 李韧, 等, 2019. 青藏高原多年冻土特征、变化及影响. 科学通报, 64(27): 2783-2795.
|
程捷, 张绪教, 田明中, 等, 2006. 黄河源区冰楔假型群的发育及其古气候意义. 第四纪研究, 26(1): 92-98. doi: 10.3321/j.issn:1001-7410.2006.01.012
|
罗栋梁, 金会军, 吴青柏, 等, 2023. 天然状态下多年冻土区活动层厚度研究进展与展望. 冰川冻土, 45(2): 558-574.
|
马丽娟, 效存德, 康世昌, 2022. 全球主要山地气候变化特征和异同-IPCC AR6 WGI报告和SROCC综合解读. 气候变化研究进展, 18(5): 605-621.
|
邱国庆, 刘经仁, 刘鸿绪, 1994. 冻土学词典. 北京: 科学出版社.
|
徐斅祖, 王家澄, 张立新, 2010. 冻土物理学. 北京: 科学出版社.
|
杨思忠, 金会军, 2010. 大兴安岭伊图里河地区的冰楔冰氢、氧同位素记录及其反映的古温度变化. 中国科学(D辑: 地球科学), 40(12): 1710-1717.
|
赵林, 丁永建, 刘广岳, 2010. 青藏高原多年冻土层中地下冰储量估算及评价. 冰川冻土, 32(1): 1-9.
|
周幼吾, 邱国庆, 郭东信, 等, 2000. 中国冻土. 北京: 科学出版社.
|