• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Cheng Yinhang, Jin Ruoshi, Miao Peisen, Wang Shaoyi, Teng Xueming, 2025. Two Metallogenic Models of Sedimentary-Hosted Uranium Deposit: Jingchuan and Tale Types. Earth Science, 50(1): 46-57. doi: 10.3799/dqkx.2024.078
    Citation: Cheng Yinhang, Jin Ruoshi, Miao Peisen, Wang Shaoyi, Teng Xueming, 2025. Two Metallogenic Models of Sedimentary-Hosted Uranium Deposit: Jingchuan and Tale Types. Earth Science, 50(1): 46-57. doi: 10.3799/dqkx.2024.078

    Two Metallogenic Models of Sedimentary-Hosted Uranium Deposit: Jingchuan and Tale Types

    doi: 10.3799/dqkx.2024.078
    • Received Date: 2024-06-22
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • The existing ore-forming models related to sedimentary-hosted uranium deposits have been primarily established focusing on different ore-controlling factors such as tectonics, sedimentation, and fluids. These models are diverse and complex. Over the past decades, with the comprehensive development of secondary exploration for uranium in drilling data from coalfields and oilfields, the close spatial coexistence pattern of "coal-oil-uranium" has been rapidly revealed. This paper analyzes the reducing media that constrain the enrichment of sedimentary-hosted uranium deposits from different perspectives. By systematically comparing and analyzing the ore-forming conditions, mineral characteristics, and geochemical features of the super large uranium deposits in the Jingchuan oil and gas field and the Tale coalfield in the Ordos Basin, two uranium ore-forming models, namely the Jingchuan type and the Tale type, are established. The Jingchuan type reducing media are primarily hydrocarbon fluids (such as CH4, H2, CO, as well as secondary H2S, pyrite, etc.), which are mainly derived from the expulsion and migration of deep-seated hydrocarbon source rocks after the sedimentary diagenesis period to the Lower Cretaceous Luohe Formation, coupled with the ore-forming process of surface oxygenated and uranium-bearing fluids. The ore bodies in this model are notably controlled by factors such as reservoir permeability, late-stage fault structures, and hydrological distribution, often characterized by the presence of multiple mineralized layers, typically dozens or even scores of layers. Constrained by the migration range of oil and gas, they exhibit significant lateral variations and phenomena of ore bodies cutting across bedding planes. The uranium minerals are primarily asphaltic uranium ores, appearing as emulsion texture, angular texture, vein-like texture, with relatively small grains ranging from a few to tens of micrometers, occasionally reaching several tens of micrometers, and distributed relatively evenly, accompanied by minerals such as pyrite, quartz, calcite, and rutile. In contrast, the Tale type reducing media are mainly coal debris, deposited contemporaneously during the sedimentary diagenesis period, and are produced parallel to the bedding, serving as chemical barriers for the enrichment and precipitation of uranium in surface oxidizing and uranium-bearing fluids. The ore bodies in this model are subject to dual constraints from the occurrence of coal-bearing rock layers and hydrology, generally exhibiting relatively stable lateral distribution. The mineralized layers usually consist of 2 to 3 layers, with the ore layers being essentially consistent with the coal-bearing rock layers, and phenomena of cutting across bedding planes are not evident. The uranium minerals mainly include uraninite and coffinite, showing irregularly granular texture, blocky texture, vein-like texture, feather-like texture, with significant variations in particle size ranging from a few micrometers to several hundred micrometers, unevenly distributed, and accompanied by minerals such as pyrite, mica, rutile, coal debris, quartz, and calcite. These two uranium ore-forming models exhibit significant differences in ore-forming conditions and characteristics, providing not only theoretical basis for uranium exploration, but also new directions for the response of multi-energy mineralization in basins and the study of the mechanisms of the sedimentary-hosted uranium.

       

    • loading
    • Adams, S. S., Smith, R. B., 1981. Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas. Office of Scientific and Technical Information (OSTI), Austin. https://doi.org/10.2172/6554832
      Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
      Chen, J. Y., Jia, H. C., Li, Y. J., et al., 2016. Origin and Source of Natural Gas in the Upper Paleozoic of the Yimeng Uplift, Ordos Basin. Oil & Gas Geology, 37(2): 205-209 (in Chinese with English abstract).
      Chen, Y., Li, J. G., Miao, P. S., et al., 2022. Relationship between the Tectono-Thermal Events and Sandstone-Type Uranium Mineralization in the Southwestern Ordos Basin, Northern China: Insights from Apatite and Zircon Fission Track Analyses. Ore Geology Reviews, 143: 104792. https://doi.org/10.1016/j.oregeorev.2022.104792
      Cheng, Y. H., Jin, R. S., Cuney, M., et al., 2024. The Strata Constraint on Large Scale Sandstone-Type Uranium Mineralization in Meso-Cenozoic Basins, Northern China. Acta Geologica Sinica, 98(7): 1953-1976 (in Chinese with English abstract).
      Cheng, Y. H., Wang, S. Y., Jin, R. S., et al., 2019. Global Miocene Tectonics and Regional Sandstone-Style Uranium Mineralization. Ore Geology Reviews, 106: 238-250. https://doi.org/10.1016/j.oregeorev.2019.02.003
      Cuney, M., Mercadier, J., Bonnetti, C., 2022. Classification of Sandstone-Related Uranium Deposits. Journal of Earth Science, 33(2): 236-256. https://doi.org/10.1007/s12583-021-1532-x
      Feng, X. X., Jin, R. S., Sima, X. Z., et al., 2017. Uranium Source Analysis and Its Geological Significance to Uranium Metallogenic Evolution in Dongsheng Uranium Ore Field. Geology in China, 44(5): 993-1005 (in Chinese with English abstract).
      Hou, B. H., Keeling, J., Li, Z. Y., 2017. Paleovalley- Related Uranium Deposits in Australia and China: A Review of Geological and Exploration Models and Methods. Ore Geology Reviews, 88: 201-234. https://doi.org/10.1016/j.oregeorev.2017.05.005
      Jin, R. S., 2020. Mineralization of Sandstone-Type Uranium Deposits in Ordos Basin. Science Press, Beijing, 106-107 (in Chinese).
      Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin "Red and Black Beds" Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract).
      Jin, R. S., Teng, X. M., 2022. Large Scale Sandstone-Type Uranium Mineralization in Northern China. North China Geology, 45(1): 42-57 (in Chinese with English abstract).
      Jin, R. S., Teng, X. M., Li, X. G., et al., 2020. Genesis of Sandstone-Type Uranium Deposits along the Northern Margin of the Ordos Basin, China. Geoscience Frontiers, 11(1): 215-227. https://doi.org/10.1016/j.gsf.2019.07.005
      Li, Z. Y., Liu, W. S., Li, W. T., et al., 2022. Exudative Metallogeny of the Hadatu Sandstone-Type Uranium Deposit in the Erlian Basin, Inner Mongolia. Geology in China, 49(4): 1009-1047 (in Chinese with English abstract).
      Li, Z. Y., Qin, M. K., Fan, H. H., et al., 2021. Main Progresses of Uranium Geology and Exploration Techniques for the Past Decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 845-857 (in Chinese with English abstract).
      Liu, C. Y., Zhang, L., Huang, L., et al., 2024. Novel Metallogenic Modell of Sandstone-Type Uranium Deposits: Mineralization by Deep Organic Fluids. Earth Science Frontiers, 31(1): 368-383 (in Chinese with English abstract).
      OECD, 2023. Uranium 2022: Resources, Production and Demand. OECD-NEA/IAEA, 88-89.
      Peng, S. L., Tian, J. P., Guo, X. Y., et al., 2023. Characteristics and Metallogenesis of Ore-Bearing Sandstone in the Tarangaole Sandstone Type Uranium Deposit, Ordos Basin. Geology in China, 50(1): 264-276 (in Chinese with English abstract).
      Peng, Y. B., Li, Z. Y., Fang, X. H., et al., 2006. Metallogenetic Characteristics of No. 2081 Uranium Deposit in the North of Ordos Basin. Acta Mineralogica Sinica, 26(3): 349-355 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2006.03.017
      Qin, M. K., Li, Z. Y., Liu, Z. Y., et al., 2024. Significant Progresses and Prospects in the Science and Technology Innovation of Uranium Geology in China since 2000. Uranium Geology, 40(2): 189-203 (in Chinese with English abstract).
      Quan, J. P., Fan, T. L., Xu, G. Z., et al., 2007. Effects of Hydrocarbon Migration on Sandstone-Type Uranium Mineralization in Basins of Northern China. Geology in China, 34(3): 470-477 (in Chinese with English abstract).
      Shi, G., Gong, Z., Huang, N., et al., 2023. The Main Controlling Factors of the Gas Content in the Permian Dalong Formation of the Xuanjing Area, the Lower Yangtze Region: A Case Study of Gangdi 1 Well. East China Geology, 44(1): 93-102 (in Chinese with English abstract).
      Si, Q. H., Teng, X. M., Zhu, Q., et al., 2024. The Origin and Migration Laws of Hydrocarbons in Uranium‐ Bearing Luohe Formation, Pengyang Area, SW Ordos Basin. Geological Journal, 1-17. https://doi.org/10.1002/gj.5017
      Wen, S. B., Zhu, Q., Cheng, Y. H., 2023. Metallogenic Epoch of Sandstone Type Uranium Deposits in the Ordos Basin and the Temporal and Spatial Regularity of Uranium Enrichment. North China Geology, 46(3): 1-11 (in Chinese with English abstract).
      Wu, B. L., Liu, C. Y., Yang, S. L., et al., 2022. Mechanistic and Progress of Uranium Mineralization by Organic Minerals (Oil, Gas and Coal) in Sedimentary Basins. Journal of Northwest University (Natural Science Edition), 52(6): 1044-1065 (in Chinese with English abstract).
      Xiao, Z. Y., Qi, F. Y., Fan, H. H., et al., 2023. Geological Characteristics and Prospecting Potential of Brine-Type Lithium Ores in Ganzhou Basin, Jiangxi Province. East China Geology, 44(4): 367-375 (in Chinese with English abstract).
      Xie, X., Bai, R. Y., Zhao, H. R., 2022. Geochemical Characteristics of Stream Sediments and Ore-Prospecting in Qiaomuwan Area, Anhui Province. East China Geology, 43(2): 205-216 (in Chinese with English abstract).
      Yan, W. Q., Zhao, Z. C., Li, W., 2019. Summary of Metallogenic Geological Characteristics of "Kujiertai" Sandstone Type Uranium Deposit in Yili Basin. Sichuan Nonferrous Metals, (4): 27-30 (in Chinese with English abstract).
      Yu, R. A., Jin, R. S., Li, T., et al., 2023. Analysis of Metallogenic Condition and Key Ore-Controlling Factor of Sandstone-Hosted Uranium Deposits in the Ordos Basin. Acta Geoscientica Sinica, 44(4): 689-706 (in Chinese with English abstract).
      Zeng, J. P., An, S. Q., Xu, T. M., et al., 2016. On Adsorption Performance of Humic Acid on Uranium. Acta Geologica Sinica, 90(12): 3563-3569 (in Chinese with English abstract).
      Zhang, J. D., Xu, G. Z., Lin, J. R., et al., 2010. The Implication of Six Kinds of New Sandstone-Type Uranium Deposits to Uranium Resources Potential in North China. Geology in China, 37(5): 1434-1449 (in Chinese with English abstract).
      Zhang, L. J., An, S. Q., Xu, T. M., et al., 2018. Study on Influcing Factors for Reduction Capacity of Gray-Green Sandstone in Ordos Sandstone-Type Uranium Deposits. Rock and Mineral Analysis, 37(4): 396-403 (in Chinese with English abstract).
      Zhang, R. L., Ding, W. L., 1994. Geological Characteristics of Nuheting-Type Uranium Deposit and Discussion on Its Oil, Gas, Water and Uranium Mineralization. Uranium Geology, 10(5): 257-265 (in Chinese with English abstract).
      Zhang, W. Y., 2019. In-Situ U-Pb Dating of SIMS and fs-LA-ICP-MS for Sandstone-Type Uranium Deposits: A Case Study of Ordos Basin and Yili Basin (Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
      Zhao, H. L., Li, J. G., Miao, P. S., et al., 2020. Mineralogical Study of Pengyang Uranium Deposit and Its Significance of Regional Mineral Exploration in Southwestern Ordos Basin. Geotectonica et Metallogenia, 44(4): 607-618 (in Chinese with English abstract).
      Zhao, H. L., Li, J. G., Xiao, Z. B., et al., 2021. Determination of Formation Age (0.14 Ma) of the Pengyang Sandstone-Type Uranium Deposit in the Ordos Basin, China: Using Pitchblende In Situ Femtosecond LA-MC-ICP-MS Method. China Geology, 4(4): 747-748. https://doi.org/10.31035/cg2021008
      Zhu, Q., Li, J. G., Miao, P. S., et al., 2020. Characteristics of Clay Minerals in the Luohe Formation in Zhenyuan Area, Ordos Basin, and Its Uranium Prospecting Significance. Geotectonica et Metallogenia, 44(4): 619-632 (in Chinese with English abstract).
      Zhu, Q., Li, J. G., Yu, R. A., et al., 2019. Lithologic- Lithographic Characteristics of the Upper and Lower Members of the Zhiluo Formation and Their Differential Control of Uranium Mineralization in the Tarangaole Area, Ordos Basin. Acta Geoscientica Sinica, 40(3): 456-468 (in Chinese with English abstract).
      Zhang, Y. C., Rong, H., Jiao, Y. Q., et al., 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043 (in Chinese with English abstract).
      陈敬轶, 贾会冲, 李永杰, 等, 2016. 鄂尔多斯盆地伊盟隆起上古生界天然气成因及气源. 石油与天然气地质, 37(2): 205-209.
      程银行, 金若时, Cuney, M., 等, 2024. 中国北方盆地大规模铀成矿作用: 地层篇. 地质学报, 98(7): 1953-1976.
      冯晓曦, 金若时, 司马献章, 等, 2017. 鄂尔多斯盆地东胜铀矿田铀源示踪及其地质意义. 中国地质, 44(5): 993-1005.
      金若时, 2020. 鄂尔多斯盆地砂岩型铀矿成矿作用. 北京: 科学出版社, 106-107.
      金若时, 程银行, 李建国, 等, 2017. 中国北方晚中生代陆相盆地红‒黑岩系耦合产出对砂岩型铀矿成矿环境的制约. 中国地质, 44(2): 205-223.
      金若时, 滕雪明, 2022. 中国北方砂岩型铀矿大规模成矿作用. 华北地质, 45(1): 42-57.
      李子颖, 刘武生, 李伟涛, 等, 2022. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用. 中国地质, 49(4): 1009-1047.
      李子颖, 秦明宽, 范洪海, 等, 2021. 我国铀矿质科技近十年的主要进展. 矿物岩石地球化学通报, 40(4): 845-857.
      刘池洋, 张龙, 黄雷, 等, 2024. 砂岩型铀矿形成的新模式: 来自深部有机流体的成矿作用. 地学前缘, 31(1): 368-383.
      彭胜龙, 田家鹏, 郭晓宇, 等, 2023. 鄂尔多斯盆地塔然高勒地区砂岩型铀矿含矿层砂岩特征及成矿作用. 中国地质, 50(1): 264-276.
      彭云彪, 李子颖, 方锡珩, 等, 2006. 鄂尔多斯盆地北部2081铀矿床成矿特征. 矿物学报, 26(3): 349-355.
      秦明宽, 李子颖, 刘章月, 等, 2024. 新世纪以来我国铀矿地质科技创新重要进展及展望. 铀矿地质, 40(2): 189-203.
      权建平, 樊太亮, 徐高中, 等, 2007. 中国北方盆地中油气运移对砂岩型铀矿成矿作用讨论. 中国地质, 34(3): 470-477.
      石刚, 龚赞, 黄宁, 等, 2023. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析——以港地1井为例. 华东地质, 44(1): 93-102.
      文思博, 朱强, 程银行, 2023. 鄂尔多斯盆地砂岩型铀矿成矿时代及铀富集时空规律. 华北地质, 46(3): 1-11.
      吴柏林, 刘池洋, 杨松林, 等, 2022. 沉积盆地有机矿产(油‒气‒煤)对铀成矿的作用机理及进展. 西北大学学报(自然科学版), 52(6): 1044-1065.
      肖则佑, 漆富勇, 范会虎, 等, 2023. 江西赣州盆地盐湖型锂矿地质特征及找矿前景. 华东地质, 44(4): 367-375.
      写熹, 白茹玉, 赵华荣, 2022. 安徽乔木湾地区水系沉积物地球化学特征及找矿远景. 华东地质, 43(2): 205-216.
      晏文权, 赵子超, 李伟, 2019. 伊犁盆地"库捷尔太式"砂岩型铀矿成矿地质特征. 四川有色金属, (4): 27-30.
      俞礽安, 金若时, 李彤, 等, 2023. 鄂尔多斯盆地砂岩型铀矿成矿地质条件和关键控矿要素分析. 地球学报, 44(4): 689-706.
      曾江萍, 安树清, 徐铁民, 等, 2016. 腐殖酸对U(Ⅵ)的吸附性能研究. 地质学报, 90(12): 3563-3569.
      张金带, 徐高中, 林锦荣, 等, 2010. 中国北方6种新的砂岩型铀矿对铀资源潜力的提示. 中国地质, 37(5): 1434-1449.
      张莉娟, 安树清, 徐铁民, 等, 2018. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究. 岩矿测试, 37(4): 396-403.
      张如良, 丁万烈, 1994. 努和廷式铀矿床地质特征及其油气水与铀成矿作用探讨. 铀矿地质, 10(5): 257-265.
      张婉莹, 2019. 砂岩型铀矿SIMS和fs⁃LA⁃ICP⁃MS原位微区U⁃Pb定年——以鄂尔多斯盆地和伊犁盆地为例(硕士学位论文). 西安: 西北大学.
      赵华雷, 李建国, 苗培森, 等, 2020. 鄂尔多斯盆地西南缘彭阳铀矿区矿物学研究及其对区域成矿的指示. 大地构造与成矿学, 44(4): 607-618.
      朱强, 李建国, 苗培森, 等, 2020. 鄂尔多斯盆地镇原地区洛河组黏土矿物特征及找铀意义. 大地构造与成矿学, 44(4): 619-632.
      朱强, 李建国, 俞礽安, 等, 2019. 鄂尔多斯盆地塔然高勒地区直罗组上、下段的岩性‒岩相特征及对铀成矿的差异性控制作用. 地球学报, 40(3): 456-468.
      张宇辰, 荣辉, 焦养泉, 等, 2024. 钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应. 地球科学, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (527) PDF downloads(78) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return