• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    ZHANG Xiong-hua, LI De-wei, YUAN Yan-ming, CAO Shu-zhao, 2003. Gravity Flow Deposit in Naxing Formation of Upper Carboniferous in Dingjie and Dingri, Tibet, and Their Geological Significances. Earth Science, 28(6): 634-638.
    Citation: Zou Qiang, Zhou Bin, Yang Tao, Chen Siyu, Yao Hongkun, Jiang Hu, Zhou Wentao, 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083

    Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas

    doi: 10.3799/dqkx.2024.083
    • Received Date: 2024-09-14
    • Publish Date: 2024-11-25
    • Global warming has led to environmental changes in the Himalayas, and glacial lake outburst has occurred frequently, having inflicted significant losses upon downstream communities and infrastructure. To understand the spatio-temporal characteristics of Himalayan glacial lake outbursts, it employed geomorphic analysis, time series analysis, and climate perturbation analysis. These methods allowed us to analyze the spatial differentiation and variation characteristics of glaciers, glacial lakes and environments in the Himalayas, and to reveal the evolution patterns of glacial lake outbursts' spatio-temporal distribution in the region. The results show follows: (1) Temperature and precipitation has increased considerably in the Himalayan region between 1980 and 2014, with a more significant increase rate observed on the northern than southern sides. Due to the influence of topography and climate, the northern slope of Himalayas and western Himalayas experienced more severe glacier mass loss. Glacial lakes were predominantly concentrated in the central Himalayas and the southern slope of Himalayas, and the number and area of glacial lakes on the southern slopes have increased more than those on the northern slopes during 1990‒2015, and the new glacial lakes are distributed at a higher elevation than the disappearing ones. (2) Since the 20th century, 249 glacial lake outburst events have occurred in 113 glacial lakes in the Himalayan region and its surrounding areas. The distribution of those glacial lakes is predominantly concentrated in major rivers' steep or extremely steep sections. The number of regional glacial lake outbursts has shown a nonlinear increase trend driven by climate change. The occurrence frequency of glacial lake outburst disasters has a breakpoint of 1966+37/-31 from 1901 to 2020. Furthermore, there is a lag effect of approximately 20 years between the warming rate and the occurrence of glacial lake outburst floods. These research findings can provide a scientific basis for addressing climate change adaptation, disaster risk reduction, and cross-border disaster risk management.

       

    • Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
      Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2019. Ice-Dams, Outburst Floods, and Movement Heterogeneity of Glaciers, Karakoram. Global and Planetary Change, 180: 100-116. https://doi.org/10.1016/j.gloplacha.2019.05.004
      Bhambri, R., Watson, C. S., Hewitt, K., et al., 2020. The Hazardous 2017-2019 Surge and River Damming by Shispare Glacier, Karakoram. Scientific Reports, 10(1): 4685. https://doi.org/10.1038/s41598-020-61277-8
      Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances, 2000-2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/NGEO2999
      Byers, A. C., Chand, M. B., Lala, J., et al., 2020. Reconstructing the History of Glacial Lake Outburst Floods (GLOF) in the Kanchenjunga Conservation Area, East Nepal: An Interdisciplinary Approach. Sustainability, 12(13): 5407. https://doi.org/10.3390/su12135407
      Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001
      Chen, Y. N., Xu, C. C., Chen, Y. P., et al., 2010. Response of Glacial-Lake Outburst Floods to Climate Change in the Yarkant River Basin on Northern Slope of Karakoram Mountains, China. Quaternary International, 226(1-2): 75-81. https://doi.org/10.1016/j.quaint.2010.01.003
      Cheng, Z. L., Tian, J. C., Zhang, Z. B., et al., 2009. Debris Flow Induced by Glacial-Lake Break in Southeast Tibet. Earth Science Frontiers, 16(6): 207-214 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.06.023
      Clague, J. J., Evans, S. G., 2000. A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews, 19(17/18): 1763-1783. https://doi.org/10.1016/S0277-3791(00)00090-1
      Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635-651. https://doi.org/10.1007/s11430-016-5244-x
      Feng, Q. H., 1991. Characteristics of Glacier Outburst Flood in the Yarkant River, Karakorum Mountains. GeoJournal, 25(2): 255-263. https://doi.org/10.1007/BF02682195
      Furian, W., Loibl, D., Schneider, C., 2021. Future Glacial Lakes in High Mountain Asia: An Inventory and Assessment of Hazard Potential from Surrounding Slopes. Journal of Glaciology, 67(264): 653-670. https://doi.org/10.1017/jog.2021.18
      GLIMS-Consortium, 2005. Glims Glacier Database, Version 1. Boulder Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/https://doi.org/10.7265/N5V98602
      Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal Research of United States Geological Survey, 1(4): 421-429.
      Hewitt, K., 1982. Natural Dams and Outburst Floods of the Karakoram Himalaya. IAHS, 138: 259-269.
      Hewitt, K., Liu, J. S., 2010. Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats. Physical Geography, 31(6): 528-551. https://doi.org/10.2747/0272-3646.31.6.528
      Hubbard, B., Heald, A., Reynolds, J. M., et al., 2005. Impact of a Rock Avalanche on a Moraine-Dammed Proglacial Lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 30(10): 1251-1264. https://doi.org/10.1002/esp.1198
      Huber, M. L., Lupker, M., Gallen, S. F., et al., 2020. Timing of Exotic, Far-Traveled Boulder Emplacement and Paleo-Outburst Flooding in the Central Himalayas. Earth Surface Dynamics, 8(3): 769-787. https://doi.org/10.5194/esurf-8-769-2020
      Ikeda, N., Narama, C., Gyalson, S., 2016. Knowledge Sharing for Disaster Risk Reduction: Insights from a Glacier Lake Workshop in the Ladakh Region, Indian Himalayas. Mountain Research and Development, 36(1): 31-40. https://doi.org/10.1659/mrd-journal-d-15-00035.1
      Iturrizaga, L., 2005. New Observations on Present and Prehistorical Glacier-Dammed Lakes in the Shimshal Valley (Karakoram Mountains). Journal of Asian Earth Sciences, 25(4): 545-555. https://doi.org/10.1016/j.jseaes.2004.04.011
      Jóhannesson, T., Raymond, C., Waddington, E., 1989. Time-Scale for Adjustment of Glaciers to Changes in Mass Balance. Journal of Glaciology, 35(121): 355-369. https://doi.org/10.3189/s002214300000928x
      King, O., Bhattacharya, A., Bhambri, R., et al., 2019. Glacial Lakes Exacerbate Himalayan Glacier Mass Loss. Scientific Reports, 9(1): 18145. https://doi.org/10.1038/s41598-019-53733-x
      Komori, J., Koike, T., Yamanokuchi, T., et al., 2012. Glacial Lake Outburst Events in the Bhutan Himalayas. Global Environmental Research, 16: 59-70.
      Kreutzmann, H., 1994. Habitat Conditions and Settlement Processes in the Hindukush-Karakoram. Petermanns Geographische Mitteilungen, 138: 337-356.
      Kropáček, J., Neckel, N., Tyrna, B., et al., 2015. Repeated Glacial Lake Outburst Flood Threatening the Oldest Buddhist Monastery in North-Western Nepal. Natural Hazards and Earth System Sciences, 15(10): 2425-2437. https://doi.org/10.5194/nhess-15-2425-2015
      Li, D., Shangguan, D. H., Wang, X. Y., et al., 2021. Expansion and Hazard Risk Assessment of Glacial Lake Jialong Co in the Central Himalayas by Using an Unmanned Surface Vessel and Remote Sensing. Science of the Total Environment, 784: 147249. https://doi.org/10.1016/j.scitotenv.2021.147249
      Liu, J. J., Cheng, Z. L., Su, P. C., 2014. The Relationship between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quaternary International, 321: 78-87. https://doi.org/10.1016/j.quaint.2013.11.023
      Mann, M. E., Zhang, Z. H., Hughes, M. K., et al., 2008. Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia. Proceedings of the National Academy of Sciences of the United States of America, 105(36): 13252-13257. https://doi.org/10.1073/pnas.0805721105
      Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266
      Maussion, F., Scherer, D., Mölg, T., et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate, 27(5): 1910-1927. https://doi.org/10.1175/jcli-d-13-00282.1
      Nie, Y., Liu, Q., Wang, J. D., et al., 2018. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology, 308: 91-106. https://doi.org/10.1016/j.geomorph.2018.02.002
      Nie, Y., Pritchard, H. D., Liu, Q., et al., 2021. Glacial Change and Hydrological Implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2: 91-106. https://doi.org/10.1038/s43017-020-00124-w
      Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008
      Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65: 31-47. https://doi.org/10.1016/S1040-6182(99)00035-X
      Sattar, A., Haritashya, U. K., Kargel, J. S., et al., 2022. Transition of a Small Himalayan Glacier Lake Outburst Flood to a Giant Transborder Flood and Debris Flow. Scientific Reports, 12(1): 12421. https://doi.org/10.1038/s41598-022-16337-6
      Seeber, L., Gornitz, V., 1983. River Profiles along the Himalayan Arc as Indicators of Active Tectonics. Tectonophysics, 92(4): 335-367. https://doi.org/10.1016/0040-1951(83)90201-9
      Shrestha, F., Steiner, J. F., Shrestha, R., et al., 2023. A Comprehensive and Version-Controlled Database of Glacial Lake Outburst Floods in High Mountain Asia. Earth System Science Data, 15(9): 3941-3961. https://doi.org/10.5194/essd-15-3941-2023
      Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., et al., 2018. Brief Communication: The Khurdopin Glacier Surge Revisited-Extreme Flow Velocities and Formation of a Dammed Lake in 2017. The Cryosphere, 12(1): 95-101. https://doi.org/10.5194/tc-12-95-2018
      Thrasher, B., Wang, W. L., Michaelis, A., et al., 2022. NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1): 262. https://doi.org/10.1038/s41597-022-01393-4
      Veh, G., Korup, O., von Specht, S., et al., 2019. Unchanged Frequency of Moraine-Dammed Glacial Lake Outburst Floods in the Himalaya. Nature Climate Change, 9: 379-383. https://doi.org/10.1038/s41558-019-0437-5
      Veh, G., Lützow, N., Kharlamova, V., et al., 2022. Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth's Future, 10(3): e2021EF002426. https://doi.org/10.1029/2021ef002426
      Wang, J. X., Chen, F., Zhang, M. M., et al., 2022. NAU-Net: A New Deep Learning Framework in Glacial Lake Detection. IEEE Geoscience and Remote Sensing Letters, 19: 2000905. https://doi.org/10.1109/LGRS.2022.3165045
      Wang, W. C., Gao, Y., Iribarren Anacona, P., et al., 2018. Integrated Hazard Assessment of Cirenmaco Glacial Lake in Zhangzangbo Valley, Central Himalayas. Geomorphology, 306: 292-305. https://doi.org/10.1016/j.geomorph.2015.08.013
      Wang, X., Liu, S., Ding, Y., et al., 2012. An Approach for Estimating the Breach Probabilities of Moraine-Dammed Lakes in the Chinese Himalayas Using Remote-Sensing Data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. https://doi.org/10.5194/nhess-12-3109-2012
      Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134: 137-159. https://doi.org/10.1016/j.earscirev.2014.03.009
      Xu, D. M., Feng, Q. H., 1989. Dangerous Glacial Lake and Outburst Features in Xizang Himalayas. Acta Geographica Sinica, 44(3): 343-351 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1989.03.011
      Xu, H. Q., 2006. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179
      Yatagai, A., Kamiguchi, K., Arakawa, O., et al., 2012. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415. https://doi.org/10.1175/bams-d-11-00122.1
      Ye, Q. H., Zhang, X. Q., Wang, Y. Z., et al., 2022. Monitoring Glacier Thinning Rate in Rongbuk Catchment on the Northern Slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators, 144: 109418. https://doi.org/10.1016/j.ecolind.2022.109418
      Yin, B. L., Zeng, J., Zhang, Y. L., et al., 2019. Recent Kyagar Glacier Lake Outburst Flood Frequency in Chinese Karakoram Unprecedented over the Last Two Centuries. Natural Hazards, 95(3): 877-881. https://doi.org/10.1007/s11069-018-3505-7
      Yang, C. D., Wang, X., Wei, J. F., et al., 2019. Chinese Glacial Lake Inventory Based on 3S Technology Method. Acta Geographica Sinica, 74(3): 544-556 (in Chinese with English abstract).
      Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2014. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390 (in Chinese with English abstract).
      Zhang, D. H., Zhou, G., Li, W., et al., 2023. A Robust Glacial Lake Outburst Susceptibility Assessment Approach Validated by GLOF Event in 2020 in the Nidu Zangbo Basin, Tibetan Plateau. CATENA, 220: 106734. https://doi.org/10.1016/j.catena.2022.106734
      Zhang, T. G., Wang, W. C., Gao, T. G., et al., 2022. An Integrative Method for Identifying Potentially Dangerous Glacial Lakes in the Himalayas. Science of the Total Environment, 806: 150442. https://doi.org/10.1016/j.scitotenv.2021.150442
      Zhang, X. S., 1992. Investigation of Glacier Bursts of the Yarkant River in Xinjiang, China. Annals of Glaciology, 16: 135-139. https://doi.org/10.1017/s0260305500004948
      Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11: 411-417. https://doi.org/10.1038/s41558-021-01028-3
      Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li-Nb-Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract).
      Zhou, B., Zou, Q., Jiang, H., et al., 2022. Research on Climate Change Characteristics and Change of Debris Flow Hazard in the Chuanxi Plateau. Journal of Natural Disasters, 31(4): 241-255 (in Chinese with English abstract).
      Zhou, B., Zou, Q., Jiang, H., et al., 2024. A Novel Framework for Predicting Glacial Lake Outburst Debris Flows in the Himalayas Amidst Climate Change. Science of the Total Environment, 946: 174435. https://doi.org/10.1016/j.scitotenv.2024.174435
      程尊兰, 田金昌, 张正波, 等, 2009. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势. 地学前缘, 16(6): 207-214.
      徐道明, 冯清华, 1989. 西藏喜马拉雅山区危险冰湖及其溃决特征. 地理学报, 44(3): 343-351. doi: 10.3321/j.issn:0375-5444.1989.03.011
      杨成德, 王欣, 魏俊峰, 等, 2019. 基于3S技术方法的中国冰湖编目. 地理学报, 74(3): 544-556.
      姚晓军, 刘时银, 孙美平, 等, 2014.20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390.
      郑有业, 陈鑫, 高顺宝, 等, 2024. 喜马拉雅成矿带西段扎果普锂铌钽矿床的发现及其找矿意义. 地球科学, 49(4): 1555-1564. doi: 10.3799/dqkx.2024.035
      周斌, 邹强, 蒋虎, 等, 2022. 川西高原气候变化特征及泥石流动态危险性响应研究. 自然灾害学报, 31(4): 241-255.
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06050100150
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.3 %FULLTEXT: 17.3 %META: 73.0 %META: 73.0 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.6 %其他: 23.6 %其他: 0.3 %其他: 0.3 %Mohali: 0.1 %Mohali: 0.1 %San Jose: 4.2 %San Jose: 4.2 %Seattle: 0.5 %Seattle: 0.5 %United States: 0.6 %United States: 0.6 %上海: 0.8 %上海: 0.8 %下葵涌: 0.8 %下葵涌: 0.8 %中山: 0.6 %中山: 0.6 %临汾: 0.3 %临汾: 0.3 %临沧: 0.3 %临沧: 0.3 %九江: 0.1 %九江: 0.1 %兰州: 1.1 %兰州: 1.1 %内江: 0.1 %内江: 0.1 %北京: 3.8 %北京: 3.8 %十堰: 0.4 %十堰: 0.4 %南京: 0.6 %南京: 0.6 %南昌: 1.5 %南昌: 1.5 %南通: 0.3 %南通: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %商丘: 0.4 %商丘: 0.4 %大庆: 1.5 %大庆: 1.5 %天津: 1.9 %天津: 1.9 %宣城: 0.6 %宣城: 0.6 %常州: 0.6 %常州: 0.6 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 3.9 %张家口: 3.9 %德阳: 1.0 %德阳: 1.0 %成都: 4.9 %成都: 4.9 %扬州: 1.4 %扬州: 1.4 %拉萨: 0.6 %拉萨: 0.6 %攀枝花: 0.3 %攀枝花: 0.3 %日照: 0.4 %日照: 0.4 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.4 %杭州: 0.4 %武汉: 2.3 %武汉: 2.3 %江门: 0.3 %江门: 0.3 %济南: 0.5 %济南: 0.5 %海东: 0.3 %海东: 0.3 %淄博: 0.1 %淄博: 0.1 %温州: 1.0 %温州: 1.0 %湖州: 0.3 %湖州: 0.3 %漯河: 3.3 %漯河: 3.3 %潍坊: 0.3 %潍坊: 0.3 %白山: 0.3 %白山: 0.3 %石家庄: 0.3 %石家庄: 0.3 %绵阳: 0.6 %绵阳: 0.6 %罗奥尔凯埃: 0.4 %罗奥尔凯埃: 0.4 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.5 %芝加哥: 0.5 %菏泽: 0.5 %菏泽: 0.5 %萍乡: 0.1 %萍乡: 0.1 %蚌埠: 0.4 %蚌埠: 0.4 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 4.3 %西宁: 4.3 %西安: 0.6 %西安: 0.6 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.6 %贵阳: 0.6 %达州: 1.5 %达州: 1.5 %运城: 0.5 %运城: 0.5 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.0 %郑州: 2.0 %重庆: 0.4 %重庆: 0.4 %金华: 1.1 %金华: 1.1 %金奈: 0.5 %金奈: 0.5 %长沙: 1.3 %长沙: 1.3 %香港: 0.3 %香港: 0.3 %黔东南: 0.4 %黔东南: 0.4 %其他其他MohaliSan JoseSeattleUnited States上海下葵涌中山临汾临沧九江兰州内江北京十堰南京南昌南通台州合肥呼和浩特哥伦布商丘大庆天津宣城常州平顶山广州张家口德阳成都扬州拉萨攀枝花日照昆明朝阳杭州武汉江门济南海东淄博温州湖州漯河潍坊白山石家庄绵阳罗奥尔凯埃芒廷维尤芝加哥菏泽萍乡蚌埠衡水衡阳西宁西安诺沃克贵阳达州运城邯郸郑州重庆金华金奈长沙香港黔东南

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(3)

      Article views (575) PDF downloads(79) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return