Citation: | Zou Qiang, Zhou Bin, Yang Tao, Chen Siyu, Yao Hongkun, Jiang Hu, Zhou Wentao, 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083 |
Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
|
Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2019. Ice-Dams, Outburst Floods, and Movement Heterogeneity of Glaciers, Karakoram. Global and Planetary Change, 180: 100-116. https://doi.org/10.1016/j.gloplacha.2019.05.004
|
Bhambri, R., Watson, C. S., Hewitt, K., et al., 2020. The Hazardous 2017-2019 Surge and River Damming by Shispare Glacier, Karakoram. Scientific Reports, 10(1): 4685. https://doi.org/10.1038/s41598-020-61277-8
|
Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances, 2000-2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/NGEO2999
|
Byers, A. C., Chand, M. B., Lala, J., et al., 2020. Reconstructing the History of Glacial Lake Outburst Floods (GLOF) in the Kanchenjunga Conservation Area, East Nepal: An Interdisciplinary Approach. Sustainability, 12(13): 5407. https://doi.org/10.3390/su12135407
|
Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001
|
Chen, Y. N., Xu, C. C., Chen, Y. P., et al., 2010. Response of Glacial-Lake Outburst Floods to Climate Change in the Yarkant River Basin on Northern Slope of Karakoram Mountains, China. Quaternary International, 226(1-2): 75-81. https://doi.org/10.1016/j.quaint.2010.01.003
|
Cheng, Z. L., Tian, J. C., Zhang, Z. B., et al., 2009. Debris Flow Induced by Glacial-Lake Break in Southeast Tibet. Earth Science Frontiers, 16(6): 207-214 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.06.023
|
Clague, J. J., Evans, S. G., 2000. A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews, 19(17/18): 1763-1783. https://doi.org/10.1016/S0277-3791(00)00090-1
|
Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635-651. https://doi.org/10.1007/s11430-016-5244-x
|
Feng, Q. H., 1991. Characteristics of Glacier Outburst Flood in the Yarkant River, Karakorum Mountains. GeoJournal, 25(2): 255-263. https://doi.org/10.1007/BF02682195
|
Furian, W., Loibl, D., Schneider, C., 2021. Future Glacial Lakes in High Mountain Asia: An Inventory and Assessment of Hazard Potential from Surrounding Slopes. Journal of Glaciology, 67(264): 653-670. https://doi.org/10.1017/jog.2021.18
|
GLIMS-Consortium, 2005. Glims Glacier Database, Version 1. Boulder Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/https://doi.org/10.7265/N5V98602
|
Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal Research of United States Geological Survey, 1(4): 421-429.
|
Hewitt, K., 1982. Natural Dams and Outburst Floods of the Karakoram Himalaya. IAHS, 138: 259-269.
|
Hewitt, K., Liu, J. S., 2010. Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats. Physical Geography, 31(6): 528-551. https://doi.org/10.2747/0272-3646.31.6.528
|
Hubbard, B., Heald, A., Reynolds, J. M., et al., 2005. Impact of a Rock Avalanche on a Moraine-Dammed Proglacial Lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 30(10): 1251-1264. https://doi.org/10.1002/esp.1198
|
Huber, M. L., Lupker, M., Gallen, S. F., et al., 2020. Timing of Exotic, Far-Traveled Boulder Emplacement and Paleo-Outburst Flooding in the Central Himalayas. Earth Surface Dynamics, 8(3): 769-787. https://doi.org/10.5194/esurf-8-769-2020
|
Ikeda, N., Narama, C., Gyalson, S., 2016. Knowledge Sharing for Disaster Risk Reduction: Insights from a Glacier Lake Workshop in the Ladakh Region, Indian Himalayas. Mountain Research and Development, 36(1): 31-40. https://doi.org/10.1659/mrd-journal-d-15-00035.1
|
Iturrizaga, L., 2005. New Observations on Present and Prehistorical Glacier-Dammed Lakes in the Shimshal Valley (Karakoram Mountains). Journal of Asian Earth Sciences, 25(4): 545-555. https://doi.org/10.1016/j.jseaes.2004.04.011
|
Jóhannesson, T., Raymond, C., Waddington, E., 1989. Time-Scale for Adjustment of Glaciers to Changes in Mass Balance. Journal of Glaciology, 35(121): 355-369. https://doi.org/10.3189/s002214300000928x
|
King, O., Bhattacharya, A., Bhambri, R., et al., 2019. Glacial Lakes Exacerbate Himalayan Glacier Mass Loss. Scientific Reports, 9(1): 18145. https://doi.org/10.1038/s41598-019-53733-x
|
Komori, J., Koike, T., Yamanokuchi, T., et al., 2012. Glacial Lake Outburst Events in the Bhutan Himalayas. Global Environmental Research, 16: 59-70.
|
Kreutzmann, H., 1994. Habitat Conditions and Settlement Processes in the Hindukush-Karakoram. Petermanns Geographische Mitteilungen, 138: 337-356.
|
Kropáček, J., Neckel, N., Tyrna, B., et al., 2015. Repeated Glacial Lake Outburst Flood Threatening the Oldest Buddhist Monastery in North-Western Nepal. Natural Hazards and Earth System Sciences, 15(10): 2425-2437. https://doi.org/10.5194/nhess-15-2425-2015
|
Li, D., Shangguan, D. H., Wang, X. Y., et al., 2021. Expansion and Hazard Risk Assessment of Glacial Lake Jialong Co in the Central Himalayas by Using an Unmanned Surface Vessel and Remote Sensing. Science of the Total Environment, 784: 147249. https://doi.org/10.1016/j.scitotenv.2021.147249
|
Liu, J. J., Cheng, Z. L., Su, P. C., 2014. The Relationship between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quaternary International, 321: 78-87. https://doi.org/10.1016/j.quaint.2013.11.023
|
Mann, M. E., Zhang, Z. H., Hughes, M. K., et al., 2008. Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia. Proceedings of the National Academy of Sciences of the United States of America, 105(36): 13252-13257. https://doi.org/10.1073/pnas.0805721105
|
Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266
|
Maussion, F., Scherer, D., Mölg, T., et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate, 27(5): 1910-1927. https://doi.org/10.1175/jcli-d-13-00282.1
|
Nie, Y., Liu, Q., Wang, J. D., et al., 2018. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology, 308: 91-106. https://doi.org/10.1016/j.geomorph.2018.02.002
|
Nie, Y., Pritchard, H. D., Liu, Q., et al., 2021. Glacial Change and Hydrological Implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2: 91-106. https://doi.org/10.1038/s43017-020-00124-w
|
Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008
|
Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65: 31-47. https://doi.org/10.1016/S1040-6182(99)00035-X
|
Sattar, A., Haritashya, U. K., Kargel, J. S., et al., 2022. Transition of a Small Himalayan Glacier Lake Outburst Flood to a Giant Transborder Flood and Debris Flow. Scientific Reports, 12(1): 12421. https://doi.org/10.1038/s41598-022-16337-6
|
Seeber, L., Gornitz, V., 1983. River Profiles along the Himalayan Arc as Indicators of Active Tectonics. Tectonophysics, 92(4): 335-367. https://doi.org/10.1016/0040-1951(83)90201-9
|
Shrestha, F., Steiner, J. F., Shrestha, R., et al., 2023. A Comprehensive and Version-Controlled Database of Glacial Lake Outburst Floods in High Mountain Asia. Earth System Science Data, 15(9): 3941-3961. https://doi.org/10.5194/essd-15-3941-2023
|
Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., et al., 2018. Brief Communication: The Khurdopin Glacier Surge Revisited-Extreme Flow Velocities and Formation of a Dammed Lake in 2017. The Cryosphere, 12(1): 95-101. https://doi.org/10.5194/tc-12-95-2018
|
Thrasher, B., Wang, W. L., Michaelis, A., et al., 2022. NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1): 262. https://doi.org/10.1038/s41597-022-01393-4
|
Veh, G., Korup, O., von Specht, S., et al., 2019. Unchanged Frequency of Moraine-Dammed Glacial Lake Outburst Floods in the Himalaya. Nature Climate Change, 9: 379-383. https://doi.org/10.1038/s41558-019-0437-5
|
Veh, G., Lützow, N., Kharlamova, V., et al., 2022. Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth's Future, 10(3): e2021EF002426. https://doi.org/10.1029/2021ef002426
|
Wang, J. X., Chen, F., Zhang, M. M., et al., 2022. NAU-Net: A New Deep Learning Framework in Glacial Lake Detection. IEEE Geoscience and Remote Sensing Letters, 19: 2000905. https://doi.org/10.1109/LGRS.2022.3165045
|
Wang, W. C., Gao, Y., Iribarren Anacona, P., et al., 2018. Integrated Hazard Assessment of Cirenmaco Glacial Lake in Zhangzangbo Valley, Central Himalayas. Geomorphology, 306: 292-305. https://doi.org/10.1016/j.geomorph.2015.08.013
|
Wang, X., Liu, S., Ding, Y., et al., 2012. An Approach for Estimating the Breach Probabilities of Moraine-Dammed Lakes in the Chinese Himalayas Using Remote-Sensing Data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. https://doi.org/10.5194/nhess-12-3109-2012
|
Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134: 137-159. https://doi.org/10.1016/j.earscirev.2014.03.009
|
Xu, D. M., Feng, Q. H., 1989. Dangerous Glacial Lake and Outburst Features in Xizang Himalayas. Acta Geographica Sinica, 44(3): 343-351 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1989.03.011
|
Xu, H. Q., 2006. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179
|
Yatagai, A., Kamiguchi, K., Arakawa, O., et al., 2012. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415. https://doi.org/10.1175/bams-d-11-00122.1
|
Ye, Q. H., Zhang, X. Q., Wang, Y. Z., et al., 2022. Monitoring Glacier Thinning Rate in Rongbuk Catchment on the Northern Slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators, 144: 109418. https://doi.org/10.1016/j.ecolind.2022.109418
|
Yin, B. L., Zeng, J., Zhang, Y. L., et al., 2019. Recent Kyagar Glacier Lake Outburst Flood Frequency in Chinese Karakoram Unprecedented over the Last Two Centuries. Natural Hazards, 95(3): 877-881. https://doi.org/10.1007/s11069-018-3505-7
|
Yang, C. D., Wang, X., Wei, J. F., et al., 2019. Chinese Glacial Lake Inventory Based on 3S Technology Method. Acta Geographica Sinica, 74(3): 544-556 (in Chinese with English abstract).
|
Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2014. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390 (in Chinese with English abstract).
|
Zhang, D. H., Zhou, G., Li, W., et al., 2023. A Robust Glacial Lake Outburst Susceptibility Assessment Approach Validated by GLOF Event in 2020 in the Nidu Zangbo Basin, Tibetan Plateau. CATENA, 220: 106734. https://doi.org/10.1016/j.catena.2022.106734
|
Zhang, T. G., Wang, W. C., Gao, T. G., et al., 2022. An Integrative Method for Identifying Potentially Dangerous Glacial Lakes in the Himalayas. Science of the Total Environment, 806: 150442. https://doi.org/10.1016/j.scitotenv.2021.150442
|
Zhang, X. S., 1992. Investigation of Glacier Bursts of the Yarkant River in Xinjiang, China. Annals of Glaciology, 16: 135-139. https://doi.org/10.1017/s0260305500004948
|
Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11: 411-417. https://doi.org/10.1038/s41558-021-01028-3
|
Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li-Nb-Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract).
|
Zhou, B., Zou, Q., Jiang, H., et al., 2022. Research on Climate Change Characteristics and Change of Debris Flow Hazard in the Chuanxi Plateau. Journal of Natural Disasters, 31(4): 241-255 (in Chinese with English abstract).
|
Zhou, B., Zou, Q., Jiang, H., et al., 2024. A Novel Framework for Predicting Glacial Lake Outburst Debris Flows in the Himalayas Amidst Climate Change. Science of the Total Environment, 946: 174435. https://doi.org/10.1016/j.scitotenv.2024.174435
|
程尊兰, 田金昌, 张正波, 等, 2009. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势. 地学前缘, 16(6): 207-214.
|
徐道明, 冯清华, 1989. 西藏喜马拉雅山区危险冰湖及其溃决特征. 地理学报, 44(3): 343-351. doi: 10.3321/j.issn:0375-5444.1989.03.011
|
杨成德, 王欣, 魏俊峰, 等, 2019. 基于3S技术方法的中国冰湖编目. 地理学报, 74(3): 544-556.
|
姚晓军, 刘时银, 孙美平, 等, 2014.20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390.
|
郑有业, 陈鑫, 高顺宝, 等, 2024. 喜马拉雅成矿带西段扎果普锂铌钽矿床的发现及其找矿意义. 地球科学, 49(4): 1555-1564. doi: 10.3799/dqkx.2024.035
|
周斌, 邹强, 蒋虎, 等, 2022. 川西高原气候变化特征及泥石流动态危险性响应研究. 自然灾害学报, 31(4): 241-255.
|