• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Hu Fanfen, Liu Hao, Wang Yong, Liu Xiangchong, 2025. U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province. Earth Science, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088
    Citation: Hu Fanfen, Liu Hao, Wang Yong, Liu Xiangchong, 2025. U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province. Earth Science, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088

    U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province

    doi: 10.3799/dqkx.2024.088
    • Received Date: 2024-06-12
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • Tungsten deposit is genetically related to highly differentiated granites. The radioactive heat production of those tungsten-associated granites is mostly 5-10 μW•m-3 and can be classified into high heat-producing granites. The radioactive heat mainly comes from U (70%), followed by Th (20%) and K (< 10%). The distribution pattern and genesis of heat-producing elements in tungsten granites are still unclear. The Xingluokeng large-scale tungsten deposit in Fujian Province was chosen as a typical case study. The main occurrence minerals of U, Th, and K were constrained using the principle of mass conservation, the compositional analysis of single minerals (biotite, plagioclase, zircon, monazite, and apatite), and published major and trace element data of the whole rock in the Xingluokeng granites. The zircon U-Pb ages of G1 and G2 are 151.5±0.6 Ma and 150.0±0.6 Ma, respectively. The total heat production rates of G1 and G2 calculated from single minerals are 1.78 μW•m-3 and 2.28 μW•m-3, respectively. Among them, K mainly occurs in K-feldspar and biotite, and the heat contribution rate of K of these two minerals to the whole rock is less than 10%. Th mainly comes from monazite, and the Th heat contribution rate in monazite is 46% at the highest. U mainly comes from zircon and monazite, and the heat contribution rate is less than 15%. The heat production rates of G1 and G2 minerals are 48% and 37% of the whole rock average heat production rates (3.74 μW•m-3 and 6.10 μW•m-3, respectively). This significant difference may be due to a large amount of U existing in a small amount of high-U zircon. Due to the limited statistical sampling of these high-U zircons, the calculated heat production rate from single minerals tends to be underestimated. The enrichment of U and Th in the Xingluokeng granites may be controlled by the protoliths and later crystallization differentiation.The decay heat from radioactive elements in the Xingluokeng granite (especially the late granite) may prolong the time limit of hydrothermal convection and promote the formation of scheelite.

       

    • loading
    • Alessio, K. L., Hand, M., Kelsey, D. E., et al., 2018. Conservation of Deep Crustal Heat Production. Geology, 46(4): 335-338. https://doi.org/10.1130/g39970.1
      Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE2017. Earth-Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
      Bachmann, O., Miller, C. F., de Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1-4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
      Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521
      Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
      Bea, F., Montero, P., Molina, J. F., 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. The Journal of Geology, 107(4): 399-419. https://doi.org/10.1086/314356
      Breiter, K., 2016. Monazite and Zircon as Major Carriers of Th, U, and Y in Peraluminous Granites: Examples from the Bohemian Massif. Mineralogy and Petrology, 110(6): 767-785. https://doi.org/10.1007/s00710-016-0448-0
      Cai, Y. L., 1984. A Study of the Genetic Type of Xingluokeng Tungsten (Molybdenum) Deposit, Fujian Province. Mineral Deposits, 3(1): 27-36(in Chinese with English abstract).
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
      Chappell, B. W., Hine, R., 2006. The Cornubian Batholith: An Example of Magmatic Fractionation on a Crustal Scale. Resource Geology, 56(3): 203-244. https://doi.org/10.1111/j.1751-3928.2006.tb00281.x
      Charoy, B., 1986. The Genesis of the Cornubian Batholith (South-West England): The Example of the Carnmenellis Pluton. Journal of Petrology, 27(3): 571-604. https://doi.org/10.1093/petrology/27.3.571
      Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301-314. https://doi.org/10.1016/j.jseaes.2014.07.022
      Chen, B. L., Shen, J. H., Gao, Y., et al., 2024. Sm-Nd Isochronal Age and Trace Element Geochemistry Characteristics of Scheelite in Xingluokeng Tungsten Deposit, Fujian Province. Mineral Deposits, 43(3): 463-477(in Chinese with English abstract).
      Chen, R. S., Li, J. W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in Northern Fujian Province: Implications for Regional Mineralization. Earth Science, 38(2): 289-304(in Chinese with English abstract).
      Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de La Société Géologiquede France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75
      Cuney, M., Friedrich, M., 1987. Physicochemical and Crystal-Chemical Controls on Accessory Mineral Paragenesis in Granitoids: Implications for Uranium Metallogenesis. Bulletinde Minéralogie, 110(2): 235-247. https://doi.org/10.3406/bulmi.1987.7983
      Förster, H. J., Tischendorf, G., Trumbull, R. B., et al., 1999. Late-Collisional Granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11): 1613-1645. https://doi.org/10.1093/petroj/40.11.1613
      Friedrich, M. H., Cuney, M., Poty, B., 1987. Uranium Geochemistry in Peraluminous Leucogranites. Eureka Mag. , 3: 353-385. https://eurekamag.com/research/020/558/020558969.php
      Gao, Y., 2022. Study on Tectonic Control and Metallogenic Mechanism of the Super Large Tungsten Deposit in Xingluokeng, West Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Huang, L. C., Jiang, S. Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900(in Chinese with English abstract). http://www.oalib.com/paper/1475724
      Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030
      Huang, W. R., 1983. Rock Mass Petrological Characteristics of Rock-Controlled Tungsten Ore: Taking Xingluokeng Tungsten Ore as an Example. Geology and Prospecting, 19(12): 2-5(in Chinese with English abstract).
      Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745(in Chinese).
      Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic-Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011
      Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402: 105756. https://doi.org/10.1016/j.lithos.2020.105756
      Li, N., 2017. Research on Mesozoic Granite and Mineralization in Zhuxi Tungsten-Copper Mining Area, Northeast Jiangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Li, Q. L., 2016. "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412, 401(in Chinese with English abstract).
      Li, X. H., Li, W. X., Li, Z. X., 2007. A Re-Discussion on the Genetic Types and Tectonic Significance of Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991(in Chinese). doi: 10.1360/csb2007-52-9-981
      Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445. https://doi.org/10.1016/j.oregeorev.2021.104445
      Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W-Sn-Mo-Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598-021-84902-6
      Liu, J. W., Chen, B., Chen, J. S., et al., 2017. Highly Differentiated Granite from the Zhuxi Tungsten(Copper) Deposit in Northeastern Jiangxi Province: Petrogenesis and Their Relationship with W-Mineralization. Acta Petrologica Sinica, 33(10): 3161-3182(in Chinese with English abstract).
      Liu, X. C., Xiao. C. H., Zhang, S. H., et al., 2020. Does the Sanlu Rock Mass in Eastern Liaoning Provide the Necessary Energy for the Mineralization of Wulong Gold Deposit? Earth Science, 45(11): 3998-4013(in Chinese with English abstract).
      Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Mao, J. W., Li, H. Y., 1995. Evolution of the Qianlishan Granite Stock and Its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. International Geology Review, 37(1): 63-80. https://doi.org/10.1080/00206819509465393
      Mao, J. W., Ouyang, H. G., Song, S. W., et al., 2019. Chapter 10 Geology and Metallogeny of Tungsten and Tin Deposits in China. Mineral Deposits of China, 411-482. https://doi.org/10.5382/sp.22.10
      Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762. https://doi.org/10.1360/tb-2020-0370
      Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969(in Chinese with English abstract).
      Mao, Z. H., Liu, J. J., Mao, J. W., et al., 2015. Geochronology and Geochemistry of Granitoids Related to the Giant Dahutang Tungsten Deposit, Middle Yangtze River Region, China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Gondwana Research, 28(2): 816-836. https://doi.org/10.1016/j.gr.2014.07.005
      Mao, Z. H., 2016. Metallogenic Dynamic Background and Mineralization of Dahutang Super-Large Porphyry Tungsten Deposit, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Masuda, A., Nakamura, N., Tanaka, T., 1973. Fine Structures of Mutually Normalized Rare-Earth Patterns of Chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. https://doi.org/10.1016/0016-7037(73)90131-2
      Naitza, S., Conte, A. M., Cuccuru, S., et al., 2017. A Late Variscan Tin Province Associated to the Ilmenite-Series Granites of the Sardinian Batholith (Italy): The Sn and Mo Mineralisation around the Monte Linas Ferroan Granite. Ore Geology Reviews, 80: 1259-1278. https://doi.org/10.1016/j.oregeorev.2016.09.013
      Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088
      Peng, H. M., Yuan, Q., Li, Q. Y., et al., 2016. Ore-Controlling Role of Porphyraceous Biotite Granite in Shimensi Tungsten Deposit and Its Prospecting Significance. Science Technology and Engineering, 16(3): 135-142(in Chinese with English abstract).
      Perkins, C., Wyborn, L. A. I., 1998. Age of Cu-Au Mineralisation, Cloncurry District, Eastern Mt Isa Inlier, Queensland, as Determined by 40Ar/39Ar Dating. Australian Journal of Earth Sciences, 45(2): 233-246. https://doi.org/10.1080/08120099808728384
      Qu, C. Y., 2016. Geological Characteristics and Prospecting Marks of Guomuyang Wolframite Deposit in Qingliu County, Fujian Province. Geology of Fujian, 35(2): 149-155(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FJDZ201602009.htm
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Romer, R. L., Kroner, U., 2015. Sediment and Weathering Control on the Distribution of Paleozoic Magmatic Tin-Tungsten Mineralization. Mineralium Deposita, 50(3): 327-338. https://doi.org/10.1007/s00126-014-0540-5
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Rybach, L., Cermak, V., 1982. Radioactive Heat Generation in Rocks. In: Angenheister, G., ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group V. Springer-Verlang, Berlin, 353-371.
      Su, X. Y., 2014. Study on Geological Characteristics and Geochemistry of Zhuxi Tungsten-Copper Deposit in Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Tichomirowa, M., Gerdes, A., Lapp, M., et al., 2019. The Chemical Evolution from Older (323-318 Ma) towards Younger Highly Evolved Tin Granites (315-314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals, 9(12): 769. https://doi.org/10.3390/min9120769
      Van Schmus, W. R., 2017, Radioactivity Properties of Minerals and Rocks. In: Van Schmus, W. R., ed., Handbook of Physical Properties of Rocks (1984). CRC Press, Flarida, 281-293. https://doi.org/10.1201/9780203712030
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Villaros, A., Stevens, G., Moyen, J. F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org10.1007/s00410-009-0396-3
      Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Petrogenesis of the Xingluokeng W-Bearing Granitic Stock, Western Fujian Province, SE China and Its Genetic Link to W Mineralization. Ore Geology Reviews, 132: 103987. https://doi.org/10.1016/j.oregeorev.2021.103987
      Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Ore-Forming Mechanism and Fluid Evolution Processes of the Xingluokeng Tungsten Deposit, Western Fujian Province: Constraints Form In-Situ Trace Elemental and Sr Isotopic Analyses of Scheelite. Acta Petrologica Sinica, 37(3): 698-716(in Chinese with English abstract).
      Wang, H., Feng, C. Y., Zhao, Y. M., et al., 2016. Ore Genesis of the Lunwei Granite-Related Scheelite Deposit in the Wuyi Metallogenic Belt, Southeast China: Constraints from Geochronology, Fluid Inclusions, and H-O-S Isotopes. Resource Geology, 66(3): 240-258. https://doi.org/10.1111/rge.12100
      Wang, S., Zhang, S. H., Zhang, Q. Q., et al., 2022. In-Situ Zircon U-Pb Dating Method by LA-ICP-MS and Discussions on the Effect of Different Beam Spot Diameters on the Dating Results. Journal of Geomechanics, 28(4): 642-652(in Chinese with English abstract).
      Wang, X. G., Liu, Z. Q., Liu, S. B., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Petrologic Geochemistry of Finegrained Granite from Zhuxi Cu-W Deposit, Jiangxi Province and Its Geological Significance. Rock and Mineral Analysis, 34(5): 592-599(in Chinese with English abstract).
      Watson, E. B., 1985. Henry's Law Behavior in Simple Systems and in Magmas: Criteria for Discerning Concentration-Dependent Partition Coefficients in Nature. Geochimica et Cosmochimica Acta, 49(4): 917-923. https://doi.org/10.1016/0016-7037(85)90307-2
      The Western Geological Party of Fujian, 1985. Geological Characteristics of the Qingpop Luokeng Tungsten (Mo) Deposit in Fujian Province. Fujian Science and Technology Press, Fuzhou(in Chinese).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Willis-Richards, J., Jackson, N. J., 1989. Evolution of the Cornubian Ore Field, Southwest England; Part I, Batholith Modeling and Ore Distribution. Economic Geology, 84(5): 1078-1100. https://doi.org/10.2113/gsecongeo.84.5.1078
      Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36(in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765(in Chinese).
      Wu, Q., Williams-Jones, A. E., Zhao, P. L., et al., 2023. The Nature and Origin of Granitic Magmas and Their Control on the Formation of Giant Tungsten Deposits. Earth-Science Reviews, 245: 104554. https://doi.org/10.1016/j.earscirev.2023.104554
      Wu, X. Y., 2019. Magmatism and Genesis of Multi-Stage Porphyritic Granite in Dahutang Superlarge Tungsten Mine, Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xiang, X. K., Chen, M. S., Zhan, G. N., et al., 2012. Metallogenic Geological Conditions of Shimensi Tungsten-Polymetallic Deposit in North Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2): 143-155(in Chinese with English abstract).
      Yakymchuk, C., Brown, M., 2019. Divergent Behaviour of Th and U during Anatexis: Implications for the Thermal Evolution of Orogenic Crust. Journal of Metamorphic Geology, 37(7): 899-916. https://doi.org/10.1111/jmg.12469
      Yu, P. P., Ding, W., Zeng, Ch. Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205-3220. https://doi.org/10.3799/dqkx.2023.078
      Yu, Q., 2017. Metallogenic Chronology and Mineralogy of the Super Large Tungsten Deposit in Zhuxi, Jiangxi Province (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      Zhang, D. H., 2020. Geochemistry of Hydrothermal Ore-Forming Processes. Geological Publishing House, Beijing(in Chinese).
      Zhang, J. J., Chen, Z. H., Wang, D. H., et al., 2008. Geological Characteristics and Metallogenic Epoch of the Xingluokeng Tungsten Deposit, Fujian Province. Geotectonica et Metallogenia, 32(1): 92-97(in Chinese with English abstract).
      Zhang, P. P., Zhang, L., Wang, Z. P., et al., 2018. Diffusion of Molybdenum and Tungsten in Anhydrous and Hydrous Granitic Melts. American Mineralogist, 103(12): 1966-1974. https://doi.org/10.2138/am-2018-6569
      Zhang, Q. Q., Gao, J. F., Tang, Y. W., et al., 2020. In-Situ LA-ICP-MS U-Pb Dating and Trace Element Analyses of Wolframites from the Xingluokeng Tungsten Deposit in Fujian Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1278-1291, 1311(in Chinese with English abstract).
      Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974
      Zhang, Y. X., Liu, Y. M., 1993. Geological-Geochemical Characteristics and Origin of the Xingluokeng W Deposit. Geochimica, 22(2): 187-196(in Chinese with English abstract).
      Zhao, Y. D., Zhang, W. G., Liu, H., et al., 2024. The Spatial and Temporal Evolution of Thermal Stress after Granite Emplacement and Its Influencing Factors. Journal of Geomechanics, 30(1): 38-56(in Chinese with English abstract).
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      蔡元来, 1984. 福建行洛坑钨(钼)矿床的成因类型研究. 矿床地质, 3(1): 27-36.
      陈柏林, 申景辉, 高允, 等, 2024. 福建行洛坑钨矿床白钨矿Sm-Nd等时线年龄及微量元素地球化学特征. 矿床地质, 43(3): 463-477.
      陈润生, 李建威, 曹康, 等, 2013. 闽北上房钨矿床锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 地球科学, 38(2): 289-304. doi: 10.3799/dqkx.2013.029
      福建闽西地质大队, 1985. 福建清流行洛坑钨(钼)矿床地质特征. 福州: 福建科学技术出版社.
      高允, 2022. 闽西行洛坑超大型钨矿床构造控矿作用及成矿机制研究(博士学位论文). 武汉: 中国地质大学.
      黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900.
      黄文荣, 1983. 岩控钨矿的岩体岩石学特征: 以行洛坑钨矿为例. 地质与勘探, 19(12): 2-5.
      蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745.
      李宁, 2017. 赣东北朱溪钨铜矿区中生代花岗岩与成矿研究(硕士学位论文). 北京: 中国地质大学(北京).
      李秋立, 2016. 离子探针锆石U-Pb定年的"高U效应". 矿物岩石地球化学通报, 35(3): 405-412, 401.
      李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991.
      刘经纬, 陈斌, 陈军胜, 等, 2017. 赣东北朱溪钨(铜)矿区高分异花岗岩的成因及与钨矿的关系. 岩石学报, 33(10): 3161-3182.
      刘向冲, 肖昌浩, 张拴宏, 等, 2020. 辽东三股流岩体是否为五龙金矿成矿提供必要的能量?地球科学, 45(11): 3998-4013. doi: 10.3799/dqkx.2020.292
      毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969.
      毛志昊, 2016. 江西大湖塘超大型斑岩钨矿床成矿动力学背景与成矿作用(博士学位论文). 北京: 中国地质大学(北京).
      彭花明, 袁琪, 李秋耘, 等, 2016. 赣西北石门寺钨矿似斑状黑云母花岗岩的控矿作用及找矿意义. 科学技术与工程, 16(3): 135-142.
      瞿承燚, 2016. 福建清流国母洋钨矿床地质特征及找矿标志. 福建地质, 35(2): 149-155.
      苏晓云, 2014. 江西朱溪钨铜矿矿床地质特征及矿床地球化学研究(硕士学位论文). 北京: 中国地质大学(北京).
      王辉, 丰成友, 李荣西, 等, 2021. 闽西行洛坑钨矿流体演化过程与成矿机制: 白钨矿原位微量元素、Sr同位素的制约. 岩石学报, 37(3): 698-716.
      王森, 张拴宏, 张琪琪, 等, 2022. LA-ICP-MS锆石微区U-Pb定年方法及不同束斑直径对年龄结果的影响作用探讨. 地质力学学报, 28(4): 642-652.
      王先广, 刘战庆, 刘善宝, 等, 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599.
      吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      吴显愿, 2019. 江西大湖塘超大型钨矿多期似斑状花岗岩岩浆作用与成因(硕士学位论文). 北京: 中国地质大学(北京).
      项新葵, 陈茂松, 詹国年, 等, 2012. 赣北石门寺矿区钨多金属矿床成矿地质条件. 地质找矿论丛, 27(2): 143-155.
      虞鹏鹏, 丁望, 曾长育, 等, 2023. 华南云开地区幕式岩浆作用与大陆再造. 地球科学, 48(9): 3205-3220. doi: 10.3799/dqkx.2023.078
      于全, 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究(硕士学位论文). 南京: 南京大学.
      张德会, 2020. 热液成矿作用地球化学. 北京: 地质出版社.
      张家菁, 陈郑辉, 王登红, 等, 2008. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义. 大地构造与成矿学, 32(1): 92-97.
      张清清, 高剑峰, 唐燕文, 等, 2020. 福建行洛坑钨矿床黑钨矿LA-ICP-MS U-Pb年龄和微量元素地球化学特征. 矿物岩石地球化学通报, 39(6): 1278-1291, 1311.
      张玉学, 刘义茂, 1993. 行洛坑钨矿地质地球化学特征及成因研究. 地球化学, 22(2): 187-196.
      赵裕达, 张文高, 刘昊, 等, 2024. 花岗岩侵位后的热应力时空演化及其影响因素. 地质力学学报, 30(1): 38-56.
    • dqkxzx-50-4-1380-.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(1)

      Article views (112) PDF downloads(17) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return