Citation: | Hu Fanfen, Liu Hao, Wang Yong, Liu Xiangchong, 2025. U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province. Earth Science, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088 |
Alessio, K. L., Hand, M., Kelsey, D. E., et al., 2018. Conservation of Deep Crustal Heat Production. Geology, 46(4): 335-338. https://doi.org/10.1130/g39970.1
|
Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE2017. Earth-Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
|
Bachmann, O., Miller, C. F., de Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1-4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
|
Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521
|
Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
|
Bea, F., Montero, P., Molina, J. F., 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. The Journal of Geology, 107(4): 399-419. https://doi.org/10.1086/314356
|
Breiter, K., 2016. Monazite and Zircon as Major Carriers of Th, U, and Y in Peraluminous Granites: Examples from the Bohemian Massif. Mineralogy and Petrology, 110(6): 767-785. https://doi.org/10.1007/s00710-016-0448-0
|
Cai, Y. L., 1984. A Study of the Genetic Type of Xingluokeng Tungsten (Molybdenum) Deposit, Fujian Province. Mineral Deposits, 3(1): 27-36(in Chinese with English abstract).
|
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
|
Chappell, B. W., Hine, R., 2006. The Cornubian Batholith: An Example of Magmatic Fractionation on a Crustal Scale. Resource Geology, 56(3): 203-244. https://doi.org/10.1111/j.1751-3928.2006.tb00281.x
|
Charoy, B., 1986. The Genesis of the Cornubian Batholith (South-West England): The Example of the Carnmenellis Pluton. Journal of Petrology, 27(3): 571-604. https://doi.org/10.1093/petrology/27.3.571
|
Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301-314. https://doi.org/10.1016/j.jseaes.2014.07.022
|
Chen, B. L., Shen, J. H., Gao, Y., et al., 2024. Sm-Nd Isochronal Age and Trace Element Geochemistry Characteristics of Scheelite in Xingluokeng Tungsten Deposit, Fujian Province. Mineral Deposits, 43(3): 463-477(in Chinese with English abstract).
|
Chen, R. S., Li, J. W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in Northern Fujian Province: Implications for Regional Mineralization. Earth Science, 38(2): 289-304(in Chinese with English abstract).
|
Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de La Société Géologiquede France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75
|
Cuney, M., Friedrich, M., 1987. Physicochemical and Crystal-Chemical Controls on Accessory Mineral Paragenesis in Granitoids: Implications for Uranium Metallogenesis. Bulletinde Minéralogie, 110(2): 235-247. https://doi.org/10.3406/bulmi.1987.7983
|
Förster, H. J., Tischendorf, G., Trumbull, R. B., et al., 1999. Late-Collisional Granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11): 1613-1645. https://doi.org/10.1093/petroj/40.11.1613
|
Friedrich, M. H., Cuney, M., Poty, B., 1987. Uranium Geochemistry in Peraluminous Leucogranites. Eureka Mag. , 3: 353-385.
|
Gao, Y., 2022. Study on Tectonic Control and Metallogenic Mechanism of the Super Large Tungsten Deposit in Xingluokeng, West Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Huang, L. C., Jiang, S. Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900(in Chinese with English abstract). http://www.oalib.com/paper/1475724
|
Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030
|
Huang, W. R., 1983. Rock Mass Petrological Characteristics of Rock-Controlled Tungsten Ore: Taking Xingluokeng Tungsten Ore as an Example. Geology and Prospecting, 19(12): 2-5(in Chinese with English abstract).
|
Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745(in Chinese).
|
Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic-Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011
|
Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402: 105756. https://doi.org/10.1016/j.lithos.2020.105756
|
Li, N., 2017. Research on Mesozoic Granite and Mineralization in Zhuxi Tungsten-Copper Mining Area, Northeast Jiangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Li, Q. L., 2016. "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412, 401(in Chinese with English abstract).
|
Li, X. H., Li, W. X., Li, Z. X., 2007. A Re-Discussion on the Genetic Types and Tectonic Significance of Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991(in Chinese). doi: 10.1360/csb2007-52-9-981
|
Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445. https://doi.org/10.1016/j.oregeorev.2021.104445
|
Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W-Sn-Mo-Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598-021-84902-6
|
Liu, J. W., Chen, B., Chen, J. S., et al., 2017. Highly Differentiated Granite from the Zhuxi Tungsten(Copper) Deposit in Northeastern Jiangxi Province: Petrogenesis and Their Relationship with W-Mineralization. Acta Petrologica Sinica, 33(10): 3161-3182(in Chinese with English abstract).
|
Liu, X. C., Xiao. C. H., Zhang, S. H., et al., 2020. Does the Sanlu Rock Mass in Eastern Liaoning Provide the Necessary Energy for the Mineralization of Wulong Gold Deposit? Earth Science, 45(11): 3998-4013(in Chinese with English abstract).
|
Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012
|
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
|
Mao, J. W., Li, H. Y., 1995. Evolution of the Qianlishan Granite Stock and Its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. International Geology Review, 37(1): 63-80. https://doi.org/10.1080/00206819509465393
|
Mao, J. W., Ouyang, H. G., Song, S. W., et al., 2019. Chapter 10 Geology and Metallogeny of Tungsten and Tin Deposits in China. Mineral Deposits of China, 411-482. https://doi.org/10.5382/sp.22.10
|
Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762. https://doi.org/10.1360/tb-2020-0370
|
Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969(in Chinese with English abstract).
|
Mao, Z. H., Liu, J. J., Mao, J. W., et al., 2015. Geochronology and Geochemistry of Granitoids Related to the Giant Dahutang Tungsten Deposit, Middle Yangtze River Region, China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Gondwana Research, 28(2): 816-836. https://doi.org/10.1016/j.gr.2014.07.005
|
Mao, Z. H., 2016. Metallogenic Dynamic Background and Mineralization of Dahutang Super-Large Porphyry Tungsten Deposit, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Masuda, A., Nakamura, N., Tanaka, T., 1973. Fine Structures of Mutually Normalized Rare-Earth Patterns of Chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. https://doi.org/10.1016/0016-7037(73)90131-2
|
Naitza, S., Conte, A. M., Cuccuru, S., et al., 2017. A Late Variscan Tin Province Associated to the Ilmenite-Series Granites of the Sardinian Batholith (Italy): The Sn and Mo Mineralisation around the Monte Linas Ferroan Granite. Ore Geology Reviews, 80: 1259-1278. https://doi.org/10.1016/j.oregeorev.2016.09.013
|
Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088
|
Peng, H. M., Yuan, Q., Li, Q. Y., et al., 2016. Ore-Controlling Role of Porphyraceous Biotite Granite in Shimensi Tungsten Deposit and Its Prospecting Significance. Science Technology and Engineering, 16(3): 135-142(in Chinese with English abstract).
|
Perkins, C., Wyborn, L. A. I., 1998. Age of Cu-Au Mineralisation, Cloncurry District, Eastern Mt Isa Inlier, Queensland, as Determined by 40Ar/39Ar Dating. Australian Journal of Earth Sciences, 45(2): 233-246. https://doi.org/10.1080/08120099808728384
|
Qu, C. Y., 2016. Geological Characteristics and Prospecting Marks of Guomuyang Wolframite Deposit in Qingliu County, Fujian Province. Geology of Fujian, 35(2): 149-155(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FJDZ201602009.htm
|
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
|
Romer, R. L., Kroner, U., 2015. Sediment and Weathering Control on the Distribution of Paleozoic Magmatic Tin-Tungsten Mineralization. Mineralium Deposita, 50(3): 327-338. https://doi.org/10.1007/s00126-014-0540-5
|
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam.
|
Rybach, L., Cermak, V., 1982. Radioactive Heat Generation in Rocks. In: Angenheister, G., ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group V. Springer-Verlang, Berlin, 353-371.
|
Su, X. Y., 2014. Study on Geological Characteristics and Geochemistry of Zhuxi Tungsten-Copper Deposit in Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Tichomirowa, M., Gerdes, A., Lapp, M., et al., 2019. The Chemical Evolution from Older (323-318 Ma) towards Younger Highly Evolved Tin Granites (315-314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals, 9(12): 769. https://doi.org/10.3390/min9120769
|
Van Schmus, W. R., 2017, Radioactivity Properties of Minerals and Rocks. In: Van Schmus, W. R., ed., Handbook of Physical Properties of Rocks (1984). CRC Press, Flarida, 281-293.
|
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
|
Villaros, A., Stevens, G., Moyen, J. F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org10.1007/s00410-009-0396-3
|
Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Petrogenesis of the Xingluokeng W-Bearing Granitic Stock, Western Fujian Province, SE China and Its Genetic Link to W Mineralization. Ore Geology Reviews, 132: 103987. https://doi.org/10.1016/j.oregeorev.2021.103987
|
Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Ore-Forming Mechanism and Fluid Evolution Processes of the Xingluokeng Tungsten Deposit, Western Fujian Province: Constraints Form In-Situ Trace Elemental and Sr Isotopic Analyses of Scheelite. Acta Petrologica Sinica, 37(3): 698-716(in Chinese with English abstract).
|
Wang, H., Feng, C. Y., Zhao, Y. M., et al., 2016. Ore Genesis of the Lunwei Granite-Related Scheelite Deposit in the Wuyi Metallogenic Belt, Southeast China: Constraints from Geochronology, Fluid Inclusions, and H-O-S Isotopes. Resource Geology, 66(3): 240-258. https://doi.org/10.1111/rge.12100
|
Wang, S., Zhang, S. H., Zhang, Q. Q., et al., 2022. In-Situ Zircon U-Pb Dating Method by LA-ICP-MS and Discussions on the Effect of Different Beam Spot Diameters on the Dating Results. Journal of Geomechanics, 28(4): 642-652(in Chinese with English abstract).
|
Wang, X. G., Liu, Z. Q., Liu, S. B., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Petrologic Geochemistry of Finegrained Granite from Zhuxi Cu-W Deposit, Jiangxi Province and Its Geological Significance. Rock and Mineral Analysis, 34(5): 592-599(in Chinese with English abstract).
|
Watson, E. B., 1985. Henry's Law Behavior in Simple Systems and in Magmas: Criteria for Discerning Concentration-Dependent Partition Coefficients in Nature. Geochimica et Cosmochimica Acta, 49(4): 917-923. https://doi.org/10.1016/0016-7037(85)90307-2
|
The Western Geological Party of Fujian, 1985. Geological Characteristics of the Qingpop Luokeng Tungsten (Mo) Deposit in Fujian Province. Fujian Science and Technology Press, Fuzhou(in Chinese).
|
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
|
Willis-Richards, J., Jackson, N. J., 1989. Evolution of the Cornubian Ore Field, Southwest England; Part I, Batholith Modeling and Ore Distribution. Economic Geology, 84(5): 1078-1100. https://doi.org/10.2113/gsecongeo.84.5.1078
|
Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36(in Chinese with English abstract).
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765(in Chinese).
|
Wu, Q., Williams-Jones, A. E., Zhao, P. L., et al., 2023. The Nature and Origin of Granitic Magmas and Their Control on the Formation of Giant Tungsten Deposits. Earth-Science Reviews, 245: 104554. https://doi.org/10.1016/j.earscirev.2023.104554
|
Wu, X. Y., 2019. Magmatism and Genesis of Multi-Stage Porphyritic Granite in Dahutang Superlarge Tungsten Mine, Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Xiang, X. K., Chen, M. S., Zhan, G. N., et al., 2012. Metallogenic Geological Conditions of Shimensi Tungsten-Polymetallic Deposit in North Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2): 143-155(in Chinese with English abstract).
|
Yakymchuk, C., Brown, M., 2019. Divergent Behaviour of Th and U during Anatexis: Implications for the Thermal Evolution of Orogenic Crust. Journal of Metamorphic Geology, 37(7): 899-916. https://doi.org/10.1111/jmg.12469
|
Yu, P. P., Ding, W., Zeng, Ch. Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205-3220. https://doi.org/10.3799/dqkx.2023.078
|
Yu, Q., 2017. Metallogenic Chronology and Mineralogy of the Super Large Tungsten Deposit in Zhuxi, Jiangxi Province (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
|
Zhang, D. H., 2020. Geochemistry of Hydrothermal Ore-Forming Processes. Geological Publishing House, Beijing(in Chinese).
|
Zhang, J. J., Chen, Z. H., Wang, D. H., et al., 2008. Geological Characteristics and Metallogenic Epoch of the Xingluokeng Tungsten Deposit, Fujian Province. Geotectonica et Metallogenia, 32(1): 92-97(in Chinese with English abstract).
|
Zhang, P. P., Zhang, L., Wang, Z. P., et al., 2018. Diffusion of Molybdenum and Tungsten in Anhydrous and Hydrous Granitic Melts. American Mineralogist, 103(12): 1966-1974. https://doi.org/10.2138/am-2018-6569
|
Zhang, Q. Q., Gao, J. F., Tang, Y. W., et al., 2020. In-Situ LA-ICP-MS U-Pb Dating and Trace Element Analyses of Wolframites from the Xingluokeng Tungsten Deposit in Fujian Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1278-1291, 1311(in Chinese with English abstract).
|
Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974
|
Zhang, Y. X., Liu, Y. M., 1993. Geological-Geochemical Characteristics and Origin of the Xingluokeng W Deposit. Geochimica, 22(2): 187-196(in Chinese with English abstract).
|
Zhao, Y. D., Zhang, W. G., Liu, H., et al., 2024. The Spatial and Temporal Evolution of Thermal Stress after Granite Emplacement and Its Influencing Factors. Journal of Geomechanics, 30(1): 38-56(in Chinese with English abstract).
|
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
|
蔡元来, 1984. 福建行洛坑钨(钼)矿床的成因类型研究. 矿床地质, 3(1): 27-36.
|
陈柏林, 申景辉, 高允, 等, 2024. 福建行洛坑钨矿床白钨矿Sm-Nd等时线年龄及微量元素地球化学特征. 矿床地质, 43(3): 463-477.
|
陈润生, 李建威, 曹康, 等, 2013. 闽北上房钨矿床锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 地球科学, 38(2): 289-304. doi: 10.3799/dqkx.2013.029
|
福建闽西地质大队, 1985. 福建清流行洛坑钨(钼)矿床地质特征. 福州: 福建科学技术出版社.
|
高允, 2022. 闽西行洛坑超大型钨矿床构造控矿作用及成矿机制研究(博士学位论文). 武汉: 中国地质大学.
|
黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900.
|
黄文荣, 1983. 岩控钨矿的岩体岩石学特征: 以行洛坑钨矿为例. 地质与勘探, 19(12): 2-5.
|
蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745.
|
李宁, 2017. 赣东北朱溪钨铜矿区中生代花岗岩与成矿研究(硕士学位论文). 北京: 中国地质大学(北京).
|
李秋立, 2016. 离子探针锆石U-Pb定年的"高U效应". 矿物岩石地球化学通报, 35(3): 405-412, 401.
|
李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991.
|
刘经纬, 陈斌, 陈军胜, 等, 2017. 赣东北朱溪钨(铜)矿区高分异花岗岩的成因及与钨矿的关系. 岩石学报, 33(10): 3161-3182.
|
刘向冲, 肖昌浩, 张拴宏, 等, 2020. 辽东三股流岩体是否为五龙金矿成矿提供必要的能量?地球科学, 45(11): 3998-4013. doi: 10.3799/dqkx.2020.292
|
毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969.
|
毛志昊, 2016. 江西大湖塘超大型斑岩钨矿床成矿动力学背景与成矿作用(博士学位论文). 北京: 中国地质大学(北京).
|
彭花明, 袁琪, 李秋耘, 等, 2016. 赣西北石门寺钨矿似斑状黑云母花岗岩的控矿作用及找矿意义. 科学技术与工程, 16(3): 135-142.
|
瞿承燚, 2016. 福建清流国母洋钨矿床地质特征及找矿标志. 福建地质, 35(2): 149-155.
|
苏晓云, 2014. 江西朱溪钨铜矿矿床地质特征及矿床地球化学研究(硕士学位论文). 北京: 中国地质大学(北京).
|
王辉, 丰成友, 李荣西, 等, 2021. 闽西行洛坑钨矿流体演化过程与成矿机制: 白钨矿原位微量元素、Sr同位素的制约. 岩石学报, 37(3): 698-716.
|
王森, 张拴宏, 张琪琪, 等, 2022. LA-ICP-MS锆石微区U-Pb定年方法及不同束斑直径对年龄结果的影响作用探讨. 地质力学学报, 28(4): 642-652.
|
王先广, 刘战庆, 刘善宝, 等, 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599.
|
吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36.
|
吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
|
吴显愿, 2019. 江西大湖塘超大型钨矿多期似斑状花岗岩岩浆作用与成因(硕士学位论文). 北京: 中国地质大学(北京).
|
项新葵, 陈茂松, 詹国年, 等, 2012. 赣北石门寺矿区钨多金属矿床成矿地质条件. 地质找矿论丛, 27(2): 143-155.
|
虞鹏鹏, 丁望, 曾长育, 等, 2023. 华南云开地区幕式岩浆作用与大陆再造. 地球科学, 48(9): 3205-3220. doi: 10.3799/dqkx.2023.078
|
于全, 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究(硕士学位论文). 南京: 南京大学.
|
张德会, 2020. 热液成矿作用地球化学. 北京: 地质出版社.
|
张家菁, 陈郑辉, 王登红, 等, 2008. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义. 大地构造与成矿学, 32(1): 92-97.
|
张清清, 高剑峰, 唐燕文, 等, 2020. 福建行洛坑钨矿床黑钨矿LA-ICP-MS U-Pb年龄和微量元素地球化学特征. 矿物岩石地球化学通报, 39(6): 1278-1291, 1311.
|
张玉学, 刘义茂, 1993. 行洛坑钨矿地质地球化学特征及成因研究. 地球化学, 22(2): 187-196.
|
赵裕达, 张文高, 刘昊, 等, 2024. 花岗岩侵位后的热应力时空演化及其影响因素. 地质力学学报, 30(1): 38-56.
|
![]() |
![]() |