• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Zhang Wen, Hu Yuan, Lu Shansong, Hu Zhaochu, Zeng Xianli, Yang Shengjun, Liu Zhenyan, 2024. New Progresses in Analytical Methods of in situ S Isotope Measurement. Earth Science, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097
    Citation: Zhang Wen, Hu Yuan, Lu Shansong, Hu Zhaochu, Zeng Xianli, Yang Shengjun, Liu Zhenyan, 2024. New Progresses in Analytical Methods of in situ S Isotope Measurement. Earth Science, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097

    New Progresses in Analytical Methods of in situ S Isotope Measurement

    doi: 10.3799/dqkx.2024.097
    • Received Date: 2024-10-21
    • Publish Date: 2024-11-25
    • The new progresses in analytical methods of in situ S isotope measurement by using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS) have been reviewed in this paper. The review is focused on the key technical difficulties, correction schemes of mass spectrum interference, and mass fractionation effects in the two instruments. As it suggested, both LA-MC-ICP-MS and SIMS can accurately determine the δ34S of various minerals, such as pyrite, chalcopyrite, sphalerite, galenite, pyrrhotite, pentlandite, molybdenite etc. The analytical accuracy is comparable to the traditional bulk analysis. The analytical precision (reproducibility) is ranges of from 0.17‰ to 0.45‰. There are a large number of reference materials of S isotope analysis in sulfides. However, the main reference materials are pyrite, chalcopyrite, pyrrhotite, and sphalerite. Other sulfides also lack the reference materials for microanalysis. It is suggested that improving the hardwares or key equipments, resolving the isotope fractionation and the matrix effect, developing the new sulfide reference materials will be the major development directions for the in situ S isotopic measurement by LA-MC-ICP-MS and SIMS.

       

    • loading
    • Agatemor, C., Beauchemin, D., 2011. Matrix Effects in Inductively Coupled Plasma Mass Spectrometry: A Review. Analytica Chimica Acta, 706(1): 66-83. https://doi.org/10.1016/j.aca.2011.08.027
      Amrani, A., Deev, A., Sessions, A. L., et al., 2012. The Sulfur⁃Isotopic Compositions of Benzothiophenes and Dibenzothiophenes as a Proxy for Thermochemical Sulfate Reduction. Geochimica et Cosmochimica Acta, 84: 152-164. https://doi.org/10.1016/j.gca.2012.01.023
      Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA⁃MC⁃ICP⁃MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657-1665. https://doi.org/10.1039/D1JA00168J
      Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA⁃MC⁃ICP⁃MS. International Journal of Mass Spectrometry, 421: 255-262. https://doi.org/10.1016/j.ijms.2017.07.015
      Bendall, C., Lahaye, Y., Fiebig, J., et al., 2006. In Situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICPMS. Applied Geochemistry, 21(5): 782-787. https://doi.org/10.1016/j.apgeochem.2006.02.012
      Bleiner, D., Lienemann, P., Vonmont, H., 2005. Laser⁃ Induced Particulate as Carrier of Analytical Information in LA⁃ICP⁃MS Direct Solid Microanalysis. Talanta, 65(5): 1286-1294. https://doi.org/10.1016/j.talanta.2004.09.004
      Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45⁃Billion⁃Year⁃Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109(38): 15146-15151. https://doi.org/10.1073/pnas.1207491109
      Bühn, B., Santos, R. V., Dardenne, M. A., et al., 2012. Mass⁃Dependent and Mass⁃Independent Sulfur Isotope Fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic Sulfide Deposits by Laser Ablation Multi⁃Collector ICP⁃MS. Chemical Geology, 312: 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003
      Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur⁃Isotope Studies. Nature, 382(6587): 127-132. https://doi.org/10.1038/382127a0
      Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S⁃SO42‒ on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443.
      Cheatham, M. M., Sangrey, W. F., White, W. M., 1993. Sources of Error in External Calibration ICP⁃MS Analysis of Geological Samples and an Improved Non⁃Linear Drift Correction Procedure. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 487-506. https://doi.org/10.1016/0584⁃8547(93)80054⁃X
      Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022a. Preparation of Sulfur⁃Bearing Reference Materials for in Situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma⁃Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344
      Chen, Y. W., Xie, Z. J., Dong, S. H., et al., 2022b. High Spatial Resolution and Precision NanoSIMS for Sulfur Isotope Analysis. Journal of Analytical Atomic Spectrometry, 37(12): 2529-2536. https://doi.org/10.1039/D2JA00248E
      Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/C6JA00270F
      Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431-1440. https://doi.org/10.1039/D1JA00029B
      Chen, Y. W., 2023. A Quantity Chalcopyrite Reference Material for in Situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131-141. https://doi.org/10.46770/as.2023.141
      Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High⁃Resolution MC⁃ICP⁃MS. Chemical Geology, 253(3-4): 102-113. https://doi.org/10.1016/j.chemgeo.2008.04.017
      Crowe, D. E., Valley, J. W., Baker, K. L., 1990. Micro⁃Analysis of Sulfur⁃Isotope Ratios and Zonation by Laser Microprobe. Geochimica et Cosmochimica Acta, 54(7): 2075-2092. https://doi.org/10.1016/0016⁃7037(90)90272⁃M
      Crowe, D. E., Vaughan, R. G., 1996. Characterization and Use of Isotopically Homogeneous Standards for in Situ Laser Microprobe Analysis of 34 Ratios. American Mineralogist, 81(1-2): 187-193. https://doi.org/10.2138/am⁃1996⁃1⁃223
      Dai, Z. H., Fu, S. L., Liu, Y. F., et al., 2024. A Potential Stibnite Reference Material for Sulfur Isotope Determination by LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(1): 216-226. https://doi.org/10.1039/d3ja00308f
      Ding, T. P., Bai, R. M., Li, Y. H., et al., 1998. The Absolute Ratio of 32S/34S of IAEA⁃S⁃1 Reference Material and V⁃CDT Sulfur Isotope Standard. Scientia Sinica (Terrae), 28(6): 546-551 (in Chinese).
      Ding, T. P., Valkiers, S, Wang, D. F., et al., 2001. The δ33S and δ34S Values and Absolute 32S/33S and 32S/34S Ratios of IAEA and Chinese Sulfur Isotope Reference Materials. Bulletin of Meneralogy, Petrology and Geochemistry, 4: 425-427 (in Chinese).
      Eiler, J. M., Graham, C., Valley, J. W., 1997. SIMS Analysis of Oxygen Isotopes: Matrix Effects in Complex Minerals and Glasses. Chemical Geology, 138(3-4): 221-244. https://doi.org/10.1016/S0009⁃2541(97)00015⁃6
      Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756
      Farquhar, J., Peters, M., Johnston, D. T., et al., 2007. Isotopic Evidence for Mesoarchaean Anoxia and Changing Atmospheric Sulphur Chemistry. Nature, 449(7163): 706-709. https://doi.org/10.1038/nature06202
      Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S⁃Pb Isotope Analyses by LA⁃(MC)⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172-2183. https://doi.org/10.1039/c8ja00305j
      Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022. A New Synthesis Scheme of Pyrite and Chalcopyrite Reference Materials for in situ Iron and Sulfur Isotope Analysis Using LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 37(3): 551-562. https://doi.org/10.1039/d1ja00392e
      Fietzke, J., Frische, M., 2016. Experimental Evaluation of Elemental Behavior during LA⁃ICP⁃MS: Influences of Plasma Conditions and Limits of Plasma Robustness. Journal of Analytical Atomic Spectrometry, 31(1): 234-244. https://doi.org/10.1039/c5ja00253b
      Fontboté, L., Kouzmanov, K., Chiaradia, M., et al., 2017. Sulfide Minerals in Hydrothermal Deposits. Elements, 13(2): 97-103. https://doi.org/10.2113/gselements.13.2.97
      Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC⁃ICP⁃MS with Non⁃Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341-2351. https://doi.org/10.1039/c7ja00282c
      Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC⁃ICP⁃MS. Analytica Chimica Acta, 911: 14-26. https://doi.org/10.1016/j.aca.2016.01.026
      Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042-1051. https://doi.org/10.1039/C4JA00011K
      Hao, J. L., Zhang, L. P., Yang, W., et al., 2023. NanoSIMS Sulfur Isotopic Analysis at 100 nm Scale by Imaging Technique. Frontiers in Chemistry, 11: 1120092. https://doi.org/10.3389/fchem.2023.1120092
      Hauri, E. H., Papineau, D., Wang, J. H., et al., 2016. High⁃Precision Analysis of Multiple Sulfur Isotopes Using NanoSIMS. Chemical Geology, 420: 148-161. https://doi.org/10.1016/j.chemgeo.2015.11.013
      Horn, I., von Blanckenburg, F., 2007. Investigation on Elemental and Isotopic Fractionation during 196 nm Femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4): 410-422. https://doi.org/10.1016/j.sab.2007.03.034
      Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J
      Hulston, J. R., Thode, H. G., 1965. Variations in the S33, S34, and S36 Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. Journal of Geophysical Research, 70(14): 3475-3484. https://doi.org/10.1029/jz070i014p03475
      Ireland, T. R., Schram, N., Holden, P., et al., 2014. Charge⁃Mode Electrometer Measurements of S⁃Isotopic Compositions on SHRIMP⁃SI. International Journal of Mass Spectrometry, 359: 26-37. https://doi.org/10.1016/j.ijms.2013.12.020
      Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth⁃Science Reviews, 106(1/2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003
      Kita, N. T., Huberty, J. M., Kozdon, R., et al., 2011. High⁃Precision SIMS Oxygen, Sulfur and Iron Stable Isotope Analyses of Geological Materials: Accuracy, Surface Topography and Crystal Orientation. Surface and Interface Analysis, 43(1/2): 427-431. https://doi.org/10.1002/sia.3424
      Kita, N. T., Ushikubo, T., Fu, B., et al., 2009. High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 264(1-4): 43-57. https://doi.org/10.1016/j.chemgeo.2009.02.012
      Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In Situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ~3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243-253. https://doi.org/10.1016/j.chemgeo.2010.05.015
      LaFlamme, C., Martin, L., Jeon, H., et al., 2016. In Situ Multiple Sulfur Isotope Analysis by SIMS of Pyrite, Chalcopyrite, Pyrrhotite, and Pentlandite to Refine Magmatic Ore Genetic Models. Chemical Geology, 444: 1-15. https://doi.org/10.1016/j.chemgeo.2016.09.032
      Li, R. C., Wang, X. L., Guan, Y., et al., 2023. The Feasibility of Using a Pyrite Standard to Calibrate the Sulfur Isotope Ratio of Marcasite during SIMS Analysis. Journal of Analytical Atomic Spectrometry, 38(5): 1016-1020. https://doi.org/10.1039/D3JA00009E
      Li, R. C., Xia, X. P., Chen, H. Y., et al., 2020. A Potential New Chalcopyrite Reference Material for Secondary Ion Mass Spectrometry Sulfur Isotope Ratio Analysis. Geostandards and Geoanalytical Research, 44(3): 485-500. https://doi.org/10.1111/ggr.12330
      Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off⁃Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177-187. https://doi.org/10.1111/ggr.12244
      Lu, J., Chen, W., 2020. In⁃Situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Atomic Spectroscopy, 41(6): 223-233. https://doi.org/10.46770/as.2020.208
      Lv, N., Bao, Z. A., Chen, K. Y., et al., 2022. New Potential Sphalerite, Chalcopyrite, Galena and Pyrite Reference Materials for Sulfur Isotope Determination by Laser Ablation⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 46(3): 451-463. https://doi.org/10.1111/ggr.12440
      Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix⁃Matched Barite Reference Material (NWU⁃Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi⁃Collector Inductively Coupled Plasma⁃Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411-421. https://doi.org/10.1111/ggr.12544
      Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75-80. https://doi.org/10.2113/gselements.6.2.75
      Mason, P. R. D., Košler, J., de Hoog, J. C. M., et al., 2006. In situ Determination of Sulfur Isotopes in Sulfur⁃Rich Materials by Laser Ablation Multiple⁃Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 21(2): 177-186. https://doi.org/10.1039/B510883G
      Mojzsis, S. J., Coath, C. D., Greenwood, J. P., et al., 2003. Mass⁃Independent Isotope Effects in Archean (2.5 to 3.8 Ga) Sedimentary Sulfides Determined by Ion Microprobe Analysis. Geochimica et Cosmochimica Acta, 67(9): 1635-1658. https://doi.org/10.1016/S0016⁃7037(03)00059⁃0
      Molnár, F., Mänttäri, I., O'Brien, H., et al., 2016. Boron, Sulphur and Copper Isotope Systematics in the Orogenic Gold Deposits of the Archaean Hattu Schist Belt, Eastern Finland. Ore Geology Reviews, 77: 133-162. https://doi.org/10.1016/j.oregeorev.2016.02.012
      Nie, X. J., Bao, Z. A., Zong, C. L., et al., 2023. A Newly Synthesized Reference Material for in situ Sulfur Isotope Measurement of Sphalerite Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(5): 1065-1075. https://doi.org/10.1039/D2JA00394E
      Ohmoto, H., Watanabe, Y., Ikemi, H., et al., 2006. Sulphur Isotope Evidence for an Oxic Archaean Atmosphere. Nature, 442(7105): 908-911. https://doi.org/10.1038/nature05044
      Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
      Peng, D. Y., Bao, Z. A., Chen, K. Y., et al., 2024. Three New Potential Sulfur Reference Materials (Pyrite, Gypsum, and Arsenopyrite) for in situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(9): 2235-2244. https://doi.org/10.1039/D4JA00200H
      Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC⁃ICP⁃MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99-106. https://doi.org/10.1016/j.chemgeo.2015.07.014
      Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1-2): 81-112. https://doi.org/10.1016/S1387⁃3806(98)14088⁃5
      Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur⁃34/Sulfur⁃32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7): 1179-1181. https://doi.org/10.1021/ac60357a026
      Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
      Stern, R. A., Fletcher, I. R., Rasmussen, B., et al., 2005. Ion Microprobe (NanoSIMS 50) Pb⁃Isotope Geochronology at < 5 μm Scale. International Journal of Mass Spectrometry, 244(2-3): 125-134. https://doi.org/10.1016/j.ijms.2005.05.005
      Thode, H. G., Monster, J., Dunford, H. B., 1961. Sulphur Isotope Geochemistry. Geochimica et Cosmochimica Acta, 25(3): 159-174. https://doi.org/10.1016/0016⁃7037(61)90074⁃6
      Tian, J., Bao, Z. A., Chen, K. Y., et al., 2024. Synthesis of Molybdenite Reference Materials for in situ Molybdenum and Sulfur Isotope Measurement Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(6): 1503-1513. https://doi.org/10.1039/D4JA00008K
      Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four⁃Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86-99. https://doi.org/10.1016/j.chemgeo.2014.06.006
      Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1
      Whitehouse, M. J., 2013. Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S. Geostandards and Geoanalytical Research, 37(1): 19-33. https://doi.org/10.1111/j.1751⁃908x.2012.00188.x
      Williford, K. H., van Kranendonk, M. J., Ushikubo, T., et al., 2011. Constraining Atmospheric Oxygen and Seawater Sulfate Concentrations during Paleoproterozoic Glaciation: In Situ Sulfur Three⁃Isotope Microanalysis of Pyrite from the Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta, 75(19): 5686-5705. https://doi.org/10.1016/j.gca.2011.07.010
      Winterholler, B., Hoppe, P., Andreae, M. O., et al., 2006. Measurement of Sulfur Isotope Ratios in Micrometer⁃Sized Samples by NanoSIMS. Applied Surface Science, 252(19): 7128-7131. https://doi.org/10.1016/j.apsusc.2006.02.150
      Winterholler, B., Hoppe, P., Foley, S., et al., 2008. Sulfur Isotope Ratio Measurements of Individual Sulfate Particles by NanoSIMS. International Journal of Mass Spectrometry, 272(1): 63-77. https://doi.org/10.1016/j.ijms.2008.01.003
      Xie, L. W., Wang, X. J., Yu, H. M., et al., 2024. A Study on a Natural Pyrite Sample as a Potential Reference Material for Simultaneous Measurement of Sulfur and Iron Isotopes Using Fs⁃LA⁃MC⁃ICP⁃MSs. Journal of Analytical Atomic Spectrometry, 39(3): 723-734. https://doi.org/10.1039/D3JA00351E
      Xie, Y. H., Wu, G., Xian, W. D., et al., 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850.
      Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758-1767. https://doi.org/10.1007/s11430⁃015⁃5106⁃6
      Zhang, J. C., Lin, Y. T., Yan, J., et al., 2017. Simultaneous Determination of Sulfur Isotopes and Trace Elements in Pyrite with a NanoSIMS 50L. Analytical Methods, 9(47): 6653-6661. https://doi.org/10.1039/C7AY01440F
      Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K
      Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223-234. https://doi.org/10.1016/j.chemgeo.2016.12.037
      丁悌平, 白瑞梅, 李延河, 等, 1998. IAEA⁃S⁃1参考物质及V⁃CDT硫同位素标准的32S/34S绝对比值. 中国科学(D辑: 地球科学), 28(6): 546-551.
      丁悌平, Valkiers, S., 万德芳, 等, 2001. IAEA和中国的硫同位素参考物质的δ33S、δ34S值与32S/33S、32S/34S绝对比值. 矿物岩石地球化学通报, 4: 425-427.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(1)

      Article views (708) PDF downloads(172) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return