Citation: | Zhang Wen, Hu Yuan, Lu Shansong, Hu Zhaochu, Zeng Xianli, Yang Shengjun, Liu Zhenyan, 2024. New Progresses in Analytical Methods of in situ S Isotope Measurement. Earth Science, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097 |
Agatemor, C., Beauchemin, D., 2011. Matrix Effects in Inductively Coupled Plasma Mass Spectrometry: A Review. Analytica Chimica Acta, 706(1): 66-83. https://doi.org/10.1016/j.aca.2011.08.027
|
Amrani, A., Deev, A., Sessions, A. L., et al., 2012. The Sulfur⁃Isotopic Compositions of Benzothiophenes and Dibenzothiophenes as a Proxy for Thermochemical Sulfate Reduction. Geochimica et Cosmochimica Acta, 84: 152-164. https://doi.org/10.1016/j.gca.2012.01.023
|
Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA⁃MC⁃ICP⁃MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657-1665. https://doi.org/10.1039/D1JA00168J
|
Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA⁃MC⁃ICP⁃MS. International Journal of Mass Spectrometry, 421: 255-262. https://doi.org/10.1016/j.ijms.2017.07.015
|
Bendall, C., Lahaye, Y., Fiebig, J., et al., 2006. In Situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICPMS. Applied Geochemistry, 21(5): 782-787. https://doi.org/10.1016/j.apgeochem.2006.02.012
|
Bleiner, D., Lienemann, P., Vonmont, H., 2005. Laser⁃ Induced Particulate as Carrier of Analytical Information in LA⁃ICP⁃MS Direct Solid Microanalysis. Talanta, 65(5): 1286-1294. https://doi.org/10.1016/j.talanta.2004.09.004
|
Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45⁃Billion⁃Year⁃Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109(38): 15146-15151. https://doi.org/10.1073/pnas.1207491109
|
Bühn, B., Santos, R. V., Dardenne, M. A., et al., 2012. Mass⁃Dependent and Mass⁃Independent Sulfur Isotope Fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic Sulfide Deposits by Laser Ablation Multi⁃Collector ICP⁃MS. Chemical Geology, 312: 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003
|
Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur⁃Isotope Studies. Nature, 382(6587): 127-132. https://doi.org/10.1038/382127a0
|
Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S⁃SO42‒ on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443.
|
Cheatham, M. M., Sangrey, W. F., White, W. M., 1993. Sources of Error in External Calibration ICP⁃MS Analysis of Geological Samples and an Improved Non⁃Linear Drift Correction Procedure. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 487-506. https://doi.org/10.1016/0584⁃8547(93)80054⁃X
|
Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022a. Preparation of Sulfur⁃Bearing Reference Materials for in Situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma⁃Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344
|
Chen, Y. W., Xie, Z. J., Dong, S. H., et al., 2022b. High Spatial Resolution and Precision NanoSIMS for Sulfur Isotope Analysis. Journal of Analytical Atomic Spectrometry, 37(12): 2529-2536. https://doi.org/10.1039/D2JA00248E
|
Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/C6JA00270F
|
Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431-1440. https://doi.org/10.1039/D1JA00029B
|
Chen, Y. W., 2023. A Quantity Chalcopyrite Reference Material for in Situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131-141. https://doi.org/10.46770/as.2023.141
|
Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High⁃Resolution MC⁃ICP⁃MS. Chemical Geology, 253(3-4): 102-113. https://doi.org/10.1016/j.chemgeo.2008.04.017
|
Crowe, D. E., Valley, J. W., Baker, K. L., 1990. Micro⁃Analysis of Sulfur⁃Isotope Ratios and Zonation by Laser Microprobe. Geochimica et Cosmochimica Acta, 54(7): 2075-2092. https://doi.org/10.1016/0016⁃7037(90)90272⁃M
|
Crowe, D. E., Vaughan, R. G., 1996. Characterization and Use of Isotopically Homogeneous Standards for in Situ Laser Microprobe Analysis of 34 Ratios. American Mineralogist, 81(1-2): 187-193. https://doi.org/10.2138/am⁃1996⁃1⁃223
|
Dai, Z. H., Fu, S. L., Liu, Y. F., et al., 2024. A Potential Stibnite Reference Material for Sulfur Isotope Determination by LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(1): 216-226. https://doi.org/10.1039/d3ja00308f
|
Ding, T. P., Bai, R. M., Li, Y. H., et al., 1998. The Absolute Ratio of 32S/34S of IAEA⁃S⁃1 Reference Material and V⁃CDT Sulfur Isotope Standard. Scientia Sinica (Terrae), 28(6): 546-551 (in Chinese).
|
Ding, T. P., Valkiers, S, Wang, D. F., et al., 2001. The δ33S and δ34S Values and Absolute 32S/33S and 32S/34S Ratios of IAEA and Chinese Sulfur Isotope Reference Materials. Bulletin of Meneralogy, Petrology and Geochemistry, 4: 425-427 (in Chinese).
|
Eiler, J. M., Graham, C., Valley, J. W., 1997. SIMS Analysis of Oxygen Isotopes: Matrix Effects in Complex Minerals and Glasses. Chemical Geology, 138(3-4): 221-244. https://doi.org/10.1016/S0009⁃2541(97)00015⁃6
|
Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756
|
Farquhar, J., Peters, M., Johnston, D. T., et al., 2007. Isotopic Evidence for Mesoarchaean Anoxia and Changing Atmospheric Sulphur Chemistry. Nature, 449(7163): 706-709. https://doi.org/10.1038/nature06202
|
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S⁃Pb Isotope Analyses by LA⁃(MC)⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172-2183. https://doi.org/10.1039/c8ja00305j
|
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022. A New Synthesis Scheme of Pyrite and Chalcopyrite Reference Materials for in situ Iron and Sulfur Isotope Analysis Using LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 37(3): 551-562. https://doi.org/10.1039/d1ja00392e
|
Fietzke, J., Frische, M., 2016. Experimental Evaluation of Elemental Behavior during LA⁃ICP⁃MS: Influences of Plasma Conditions and Limits of Plasma Robustness. Journal of Analytical Atomic Spectrometry, 31(1): 234-244. https://doi.org/10.1039/c5ja00253b
|
Fontboté, L., Kouzmanov, K., Chiaradia, M., et al., 2017. Sulfide Minerals in Hydrothermal Deposits. Elements, 13(2): 97-103. https://doi.org/10.2113/gselements.13.2.97
|
Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC⁃ICP⁃MS with Non⁃Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341-2351. https://doi.org/10.1039/c7ja00282c
|
Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC⁃ICP⁃MS. Analytica Chimica Acta, 911: 14-26. https://doi.org/10.1016/j.aca.2016.01.026
|
Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042-1051. https://doi.org/10.1039/C4JA00011K
|
Hao, J. L., Zhang, L. P., Yang, W., et al., 2023. NanoSIMS Sulfur Isotopic Analysis at 100 nm Scale by Imaging Technique. Frontiers in Chemistry, 11: 1120092. https://doi.org/10.3389/fchem.2023.1120092
|
Hauri, E. H., Papineau, D., Wang, J. H., et al., 2016. High⁃Precision Analysis of Multiple Sulfur Isotopes Using NanoSIMS. Chemical Geology, 420: 148-161. https://doi.org/10.1016/j.chemgeo.2015.11.013
|
Horn, I., von Blanckenburg, F., 2007. Investigation on Elemental and Isotopic Fractionation during 196 nm Femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4): 410-422. https://doi.org/10.1016/j.sab.2007.03.034
|
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J
|
Hulston, J. R., Thode, H. G., 1965. Variations in the S33, S34, and S36 Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. Journal of Geophysical Research, 70(14): 3475-3484. https://doi.org/10.1029/jz070i014p03475
|
Ireland, T. R., Schram, N., Holden, P., et al., 2014. Charge⁃Mode Electrometer Measurements of S⁃Isotopic Compositions on SHRIMP⁃SI. International Journal of Mass Spectrometry, 359: 26-37. https://doi.org/10.1016/j.ijms.2013.12.020
|
Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth⁃Science Reviews, 106(1/2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003
|
Kita, N. T., Huberty, J. M., Kozdon, R., et al., 2011. High⁃Precision SIMS Oxygen, Sulfur and Iron Stable Isotope Analyses of Geological Materials: Accuracy, Surface Topography and Crystal Orientation. Surface and Interface Analysis, 43(1/2): 427-431. https://doi.org/10.1002/sia.3424
|
Kita, N. T., Ushikubo, T., Fu, B., et al., 2009. High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 264(1-4): 43-57. https://doi.org/10.1016/j.chemgeo.2009.02.012
|
Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In Situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ~3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243-253. https://doi.org/10.1016/j.chemgeo.2010.05.015
|
LaFlamme, C., Martin, L., Jeon, H., et al., 2016. In Situ Multiple Sulfur Isotope Analysis by SIMS of Pyrite, Chalcopyrite, Pyrrhotite, and Pentlandite to Refine Magmatic Ore Genetic Models. Chemical Geology, 444: 1-15. https://doi.org/10.1016/j.chemgeo.2016.09.032
|
Li, R. C., Wang, X. L., Guan, Y., et al., 2023. The Feasibility of Using a Pyrite Standard to Calibrate the Sulfur Isotope Ratio of Marcasite during SIMS Analysis. Journal of Analytical Atomic Spectrometry, 38(5): 1016-1020. https://doi.org/10.1039/D3JA00009E
|
Li, R. C., Xia, X. P., Chen, H. Y., et al., 2020. A Potential New Chalcopyrite Reference Material for Secondary Ion Mass Spectrometry Sulfur Isotope Ratio Analysis. Geostandards and Geoanalytical Research, 44(3): 485-500. https://doi.org/10.1111/ggr.12330
|
Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off⁃Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177-187. https://doi.org/10.1111/ggr.12244
|
Lu, J., Chen, W., 2020. In⁃Situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Atomic Spectroscopy, 41(6): 223-233. https://doi.org/10.46770/as.2020.208
|
Lv, N., Bao, Z. A., Chen, K. Y., et al., 2022. New Potential Sphalerite, Chalcopyrite, Galena and Pyrite Reference Materials for Sulfur Isotope Determination by Laser Ablation⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 46(3): 451-463. https://doi.org/10.1111/ggr.12440
|
Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix⁃Matched Barite Reference Material (NWU⁃Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi⁃Collector Inductively Coupled Plasma⁃Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411-421. https://doi.org/10.1111/ggr.12544
|
Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75-80. https://doi.org/10.2113/gselements.6.2.75
|
Mason, P. R. D., Košler, J., de Hoog, J. C. M., et al., 2006. In situ Determination of Sulfur Isotopes in Sulfur⁃Rich Materials by Laser Ablation Multiple⁃Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 21(2): 177-186. https://doi.org/10.1039/B510883G
|
Mojzsis, S. J., Coath, C. D., Greenwood, J. P., et al., 2003. Mass⁃Independent Isotope Effects in Archean (2.5 to 3.8 Ga) Sedimentary Sulfides Determined by Ion Microprobe Analysis. Geochimica et Cosmochimica Acta, 67(9): 1635-1658. https://doi.org/10.1016/S0016⁃7037(03)00059⁃0
|
Molnár, F., Mänttäri, I., O'Brien, H., et al., 2016. Boron, Sulphur and Copper Isotope Systematics in the Orogenic Gold Deposits of the Archaean Hattu Schist Belt, Eastern Finland. Ore Geology Reviews, 77: 133-162. https://doi.org/10.1016/j.oregeorev.2016.02.012
|
Nie, X. J., Bao, Z. A., Zong, C. L., et al., 2023. A Newly Synthesized Reference Material for in situ Sulfur Isotope Measurement of Sphalerite Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(5): 1065-1075. https://doi.org/10.1039/D2JA00394E
|
Ohmoto, H., Watanabe, Y., Ikemi, H., et al., 2006. Sulphur Isotope Evidence for an Oxic Archaean Atmosphere. Nature, 442(7105): 908-911. https://doi.org/10.1038/nature05044
|
Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
|
Peng, D. Y., Bao, Z. A., Chen, K. Y., et al., 2024. Three New Potential Sulfur Reference Materials (Pyrite, Gypsum, and Arsenopyrite) for in situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(9): 2235-2244. https://doi.org/10.1039/D4JA00200H
|
Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC⁃ICP⁃MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99-106. https://doi.org/10.1016/j.chemgeo.2015.07.014
|
Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1-2): 81-112. https://doi.org/10.1016/S1387⁃3806(98)14088⁃5
|
Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur⁃34/Sulfur⁃32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7): 1179-1181. https://doi.org/10.1021/ac60357a026
|
Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
|
Stern, R. A., Fletcher, I. R., Rasmussen, B., et al., 2005. Ion Microprobe (NanoSIMS 50) Pb⁃Isotope Geochronology at < 5 μm Scale. International Journal of Mass Spectrometry, 244(2-3): 125-134. https://doi.org/10.1016/j.ijms.2005.05.005
|
Thode, H. G., Monster, J., Dunford, H. B., 1961. Sulphur Isotope Geochemistry. Geochimica et Cosmochimica Acta, 25(3): 159-174. https://doi.org/10.1016/0016⁃7037(61)90074⁃6
|
Tian, J., Bao, Z. A., Chen, K. Y., et al., 2024. Synthesis of Molybdenite Reference Materials for in situ Molybdenum and Sulfur Isotope Measurement Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(6): 1503-1513. https://doi.org/10.1039/D4JA00008K
|
Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four⁃Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86-99. https://doi.org/10.1016/j.chemgeo.2014.06.006
|
Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1
|
Whitehouse, M. J., 2013. Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S. Geostandards and Geoanalytical Research, 37(1): 19-33. https://doi.org/10.1111/j.1751⁃908x.2012.00188.x
|
Williford, K. H., van Kranendonk, M. J., Ushikubo, T., et al., 2011. Constraining Atmospheric Oxygen and Seawater Sulfate Concentrations during Paleoproterozoic Glaciation: In Situ Sulfur Three⁃Isotope Microanalysis of Pyrite from the Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta, 75(19): 5686-5705. https://doi.org/10.1016/j.gca.2011.07.010
|
Winterholler, B., Hoppe, P., Andreae, M. O., et al., 2006. Measurement of Sulfur Isotope Ratios in Micrometer⁃Sized Samples by NanoSIMS. Applied Surface Science, 252(19): 7128-7131. https://doi.org/10.1016/j.apsusc.2006.02.150
|
Winterholler, B., Hoppe, P., Foley, S., et al., 2008. Sulfur Isotope Ratio Measurements of Individual Sulfate Particles by NanoSIMS. International Journal of Mass Spectrometry, 272(1): 63-77. https://doi.org/10.1016/j.ijms.2008.01.003
|
Xie, L. W., Wang, X. J., Yu, H. M., et al., 2024. A Study on a Natural Pyrite Sample as a Potential Reference Material for Simultaneous Measurement of Sulfur and Iron Isotopes Using Fs⁃LA⁃MC⁃ICP⁃MSs. Journal of Analytical Atomic Spectrometry, 39(3): 723-734. https://doi.org/10.1039/D3JA00351E
|
Xie, Y. H., Wu, G., Xian, W. D., et al., 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850.
|
Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758-1767. https://doi.org/10.1007/s11430⁃015⁃5106⁃6
|
Zhang, J. C., Lin, Y. T., Yan, J., et al., 2017. Simultaneous Determination of Sulfur Isotopes and Trace Elements in Pyrite with a NanoSIMS 50L. Analytical Methods, 9(47): 6653-6661. https://doi.org/10.1039/C7AY01440F
|
Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K
|
Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223-234. https://doi.org/10.1016/j.chemgeo.2016.12.037
|
丁悌平, 白瑞梅, 李延河, 等, 1998. IAEA⁃S⁃1参考物质及V⁃CDT硫同位素标准的32S/34S绝对比值. 中国科学(D辑: 地球科学), 28(6): 546-551.
|
丁悌平, Valkiers, S., 万德芳, 等, 2001. IAEA和中国的硫同位素参考物质的δ33S、δ34S值与32S/33S、32S/34S绝对比值. 矿物岩石地球化学通报, 4: 425-427.
|