• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Liu Jiawen, Tian Shihong, Geng Xianlei, Liang Zhengwei, Chen Lu, 2024. Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region. Earth Science, 49(11): 3930-3945. doi: 10.3799/dqkx.2024.100
    Citation: Liu Jiawen, Tian Shihong, Geng Xianlei, Liang Zhengwei, Chen Lu, 2024. Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region. Earth Science, 49(11): 3930-3945. doi: 10.3799/dqkx.2024.100

    Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region

    doi: 10.3799/dqkx.2024.100
    • Received Date: 2024-10-23
    • Publish Date: 2024-11-25
    • Post-collisional potassic magmas are commonly regarded as evidence for the recycling of subducted sediments in the lithospheric mantle of orogenic belts, with potassium isotope serving as an excellent tracer for these recycled sediments. This study takes the lamprophyres from the Sanjiang region as an example, conducting potassium isotope analysis based on major and trace elements and Sr-Nd-Pb isotopes, to explore the characteristics of the lithospheric mantle source in the Sanjiang region.This study reveals that the lamprophyres from four distinct regions-Jianchuan, Beiya, Yanyuan, and Yao'an-collectively represent the characteristics of the mantle source. These samples exhibit no association with weathering alteration, fractional crystallization, crustal contamination, and dynamic fractionation processes. Overall, compared to the mantle, the samples display slightly lighter potassium isotopic compositions from (-0.61±0.02)‰ to (-0.31±0.01)‰, suggesting a correlation with subducted sediment metasomatism rather than with fluids typically enriched in heavier potassium isotopes.Further simulations utilizing the Monte Carlo model for end-member mixing calculations indicate varying degrees of subducted sediment incorporation in the four regions, with the sediment proportion in the Yao'an area potentially reaching up to 10%. This conclusion further substantiates the efficacy of potassium isotope as a sensitive tracer, capable of effectively tracking the recycled subduction sediment components within the mantle.

       

    • loading
    • Berglund, M., Wieser, M. E., 2011. Isotopic Compositions of the Elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83(2): 397-410. https://doi.org/10.1351/pac-rep-10-06-02
      Chen, H., Liu, X. M., Wang, K., 2020. Potassium Isotope Fractionation during Chemical Weathering of Basalts. Earth and Planetary Science Letters, 539: 116192. https://doi.org/10.1016/j.epsl.2020.116192
      Chen, H., Saunders, N. J., Jerram, M., et al., 2021. High-Precision Potassium Isotopic Measurements by Collision Cell Equipped MC-ICP-MS. Chemical Geology, 578: 120281. https://doi.org/10.1016/j.chemgeo.2021.120281
      Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Cocks, L. R. M., Torsvik, T. H., 2013. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 117: 40-79. https://doi.org/10.1016/j.earscirev.2012.12.001
      Dalslåen, B. H., Gasser, D., Grenne, T., et al., 2020. Ordovician Shoshonitic to Ultrapotassic Volcanism in the Central Norwegian Caledonides: The Result of Sediment Subduction, Mantle Metasomatism and Mantle Partial Melting. Lithos, 356: 105372. https://doi.org/10.1016/j.lithos.2020.105372
      Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268-299. https://doi.org/10.1016/j.earscirev.2014.05.015
      Du, D. H., Luo, X. L., Wang, X. L., et al., 2024. A Recipe for Making Potassium-Rich Magmas in Collisional Orogens: New Insights from K and Fe Isotopes. Earth and Planetary Science Letters, 632: 118642. https://doi.org/10.1016/j.epsl.2024.118642
      Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3/4/5/6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-T
      Förster, M. W., Buhre, S., Xu, B., et al., 2019. Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle. Minerals, 10(1): 41. https://doi.org/10.3390/min10010041
      Gan, T., Huang, Z. L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018
      Geng, X. L., Tian, S. H., Xu, W., et al., 2024. A Two-Stage Geodynamic Model for Post-Collisional Potassic-Ultrapotassic Magmatism in Southeast Tibet. Journal of Geophysical Research (Solid Earth), 129(8): e2024JB028887. https://doi.org/10.1029/2024JB028887
      Guo, Z. F., Hertogen, J., Liu, J. Q., et al., 2005. Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis. Journal of Petrology, 46(1): 33-78. https://doi.org/10.1093/petrology/egh061
      Gupta, A. K., 2015. Origin of Potassium-Rich Silica- Deficient Igneous Rocks. Springer New Delhi, India, https://doi.org/10.1007/978-81-322-2083-1
      Hille, M., Hu, Y., Huang, T. Y., et al., 2019. Homogeneous and Heavy Potassium Isotopic Composition of Global Oceans. Science Bulletin, 64(23): 1740-1742. https://doi.org/10.1016/j.scib.2019.09.024
      Hu, Y., Teng, F. Z., Chauvel, C., 2021a. Potassium Isotopic Evidence for Sedimentary Input to the Mantle Source of Lesser Antilles Lavas. Geochimica et Cosmochimica Acta, 295: 98-111. https://doi.org/10.1016/j.gca.2020.12.013
      Hu, Y., Teng, F. Z., Helz, R. T., et al., 2021b. Potassium Isotope Fractionation during Magmatic Differentiation and the Composition of the Mantle. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB021543. https://doi.org/10.1029/2020JB021543
      Hu, Y., Teng, F. Z., Plank, T., et al., 2020. Potassium Isotopic Heterogeneity in Subducting Oceanic Plates. Science Advances, 6(49): eabb2472. https://doi: 10.1126/sciadv.abb2472
      Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Mineralogical and Geochemical Constraints on the Petrogenesis of Post-Collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China. Journal of Petrology, 51(8): 1617-1654. https://doi.org/10.1093/petrology/egq032
      Huang, F., Lundstrom, C. C., Glessner, J., et al., 2009. Chemical and Isotopic Fractionation of Wet Andesite in a Temperature Gradient: Experiments and Models Suggesting a New Mechanism of Magma Differentiation. Geochimica et Cosmochimica Acta, 73(3): 729-749. https://doi.org/10.1016/j.gca.2008.11.012
      Huang, T. Y., Teng, F. Z., Rudnick, R. L., et al., 2020. Heterogeneous Potassium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 278: 122-136. https://doi.org/10.1016/j.gca.2019.05.022
      Huang, T. Y., Teng, F. Z., Wang, Z. Z., et al., 2023. Potassium Isotope Fractionation during Granitic Magmatic Differentiation: Mineral-Pair Perspectives. Geochimica et Cosmochimica Acta, 343: 196-211. https://doi.org/10.1016/j.gca.2022.11.006
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Le Maitre, R. W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 1-208. https://doi.org/10.1017/CBO9780511535581
      Li, S. L., Li, W. Q., Beard, B. L., et al., 2019a. K Isotopes as a Tracer for Continental Weathering and Geological K Cycling. Proceedings of the National Academy of Sciences of the United States of America, 116(18): 8740-8745. https://doi.org/10.1073/pnas.1811282116
      Li, W. Q., Li, S. L., Beard, B. L., 2019b. Geological Cycling of Potassium and the K Isotopic Response: Insights from Loess and Shales. Acta Geochimica, 38(4): 508-516. https://doi.org/10.1007/s11631-019-00345-x
      Li, Y. H., Wang, W. Z., Huang, S. C., et al., 2019c. First-Principles Investigation of the Concentration Effect on Equilibrium Fractionation of K Isotopes in Feldspars. Geochimica et Cosmochimica Acta, 245: 374-384. https://doi.org/10.1016/j.gca.2018.11.006
      Li, Y. H., Wang, W. Z., Wu, Z. Q., et al., 2019d. First-Principles Investigation of Equilibrium K Isotope Fractionation among K-Bearing Minerals. Geochimica et Cosmochimica Acta, 264: 30-42. https://doi.org/10.1016/j.gca.2019.07.038
      Li, W. S., Coogan, L. A., Wang, K., et al., 2024. Hydrothermal Origin of Heavy Potassium Isotope Compositions in Altered Oceanic Crust: Implications for Tracing the Elemental Cycle. Earth and Planetary Science Letters, 625: 118448. https://doi.org/10.1016/j.epsl.2023.118448
      Li, W. S., Liu, X. M., Wang, K., et al., 2022. Potassium Isotope Signatures in Modern Marine Sediments: Insights into Early Diagenesis. Earth and Planetary Science Letters, 599: 117849. https://doi.org/10.1016/j.epsl.2022.117849
      Liu, D., Zhao, Z. D., Depaolo, D. J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet: Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268-271: 48-64. https://doi: 10.1016/j.lithos.2016.10.034
      Liu, H. Y., Wang, K., Sun, W. D., et al., 2020. Extremely Light K in Subducted Low-T Altered Oceanic Crust: Implications for K Recycling in Subduction Zone. Geochimica et Cosmochimica Acta, 277: 206-223. https://doi.org/10.1016/j.gca.2020.03.025
      Liu, H. Y., Xue, Y. Y., Wang, K., et al., 2021. Contributions of Slab-Derived Fluids to Ultrapotassic Rocks Indicated by K Isotopes. Lithos, 396: 106202. https://doi.org/10.1016/j.lithos.2021.106202
      Lu, Y. J., Kerrich, R., McCuaig, T. C., et al., 2013. Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology, 54(7): 1309-1348. https://doi.org/10.1093/petrology/egt013
      Lu, Y. J., McCuaig, T. C., Li, Z. X., et al., 2015. Paleogene Post-Collisional Lamprophyres in Western Yunnan, Western Yangtze Craton: Mantle Source and Tectonic Implications. Lithos, 233: 139-161. https://doi.org/10.1016/j.lithos.2015.02.003
      McDonough, W., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miao, Z., Li, X. Q., Zhao, Z. D., et al., 2023. Deciphering Mantle Heterogeneity Associated with Ancient Subduction-Related Metasomatism: Insights from Mg-K Isotopes in Potassic Alkaline Rocks. Geochimica et Cosmochimica Acta, 348: 258-277. https://doi.org/10.1016/j.gca.2023.03.020
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post- Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.13999
      Mo, X. X., Zhao, Z. D., Zhu, D. C., et al., 2009. On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and Geochemical Constraints. Earth Science, 34(1): 17-27 (in Chinese with English abstract).
      Murphy, D. T., Collerson, K. D., Kamber, B. S., 2002. Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments. Journal of Petrology, 43(6): 981-1001. https://doi.org/10.1093/petrology/43.6.981
      Müller, D., Groves, D. I., 1993. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 8(5): 383-406. https://doi.org/10.1016/0169-1368(93)90035-W
      Palmer, M. R., Ersoy, E. Y., Akal, C., et al., 2019. A Short, Sharp Pulse of Potassium-Rich Volcanism during Continental Collision and Subduction. Geology, 47(11): 1079-1082. https://doi.org/10.1130/g45836.1
      Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Parendo, C. A., Jacobsen, S. B., Wang, K., 2017. K Isotopes as a Tracer of Seafloor Hydrothermal Alteration. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1827-1831. https://doi.org/10.1073/pnas.1609228114
      Philpotts, J. A., Schnetzler, C. C., 1970. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 34(3): 307-322. https://doi.org/10.1016/0016-7037(70)90108-0
      Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry. Elsevier, Amsterdam, 607-629. https://doi.org/10.1016/b978-0-08-095975-7.00319-3
      Prelević, D., Foley, S. F., Romer, R., et al., 2008. Mediterranean Tertiary Lamproites Derived from Multiple Source Components in Postcollisional Geodynamics. Geochimica et Cosmochimica Acta, 72(8): 2125-2156. https://doi.org/10.1016/j.gca.2008.01.029
      Prelević, D., Jacob, D. E., Foley, S. F., 2013. Recycling Plus: A New Recipe for the Formation of Alpine- Himalayan Orogenic Mantle Lithosphere. Earth and Planetary Science Letters, 362: 187-197. https://doi.org/10.1016/j.epsl.2012.11.035
      Richter, F. M., Bruce Watson, E., Chaussidon, M., et al., 2014. Isotope Fractionation of Li and K in Silicate Liquids by Soret Diffusion. Geochimica et Cosmochimica Acta, 138: 136-145. https://doi.org/10.1016/j.gca.2014.04.012
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Santiago Ramos, D. P., Coogan, L. A., Murphy, J. G., et al., 2020. Low-Temperature Oceanic Crust Alteration and the Isotopic Budgets of Potassium and Magnesium in Seawater. Earth and Planetary Science Letters, 541: 116290. https://doi.org/10.1016/j.epsl.2020.116290
      Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2021. Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the Genesis of Potassium-Rich Adakite-Like Intrusions in Collisional Zones. Journal of Petrology, 62(11): egab066. https://doi.org/10.1093/petrology/egab066
      Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2022. Pre-Late Eocene Position of the Lüchun-Jinping Microblock in Western Yangtze Craton: Constraints from Eocene-Oligocene Lamprophyres in Southeastern Tibet. Lithos, 414: 106622. https://doi.org/10.1016/j.lithos.2022.106622
      Soder, C. G., Romer, R. L., 2018. Post-Collisional Potassic-Ultrapotassic Magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction. Journal of Petrology, 59(6): 1007-1034. https://doi.org/10.1093/petrology/egy053
      Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1/2/3/4): 169-185. https://doi.org/10.1016/0012-821X(94)00263-X
      Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, Y., Teng, F. Z., Hu, Y., et al., 2020. Tracing Subducted Oceanic Slabs in the Mantle by Using Potassium Isotopes. Geochimica et Cosmochimica Acta, 278: 353-360. https://doi.org/10.1016/j.gca.2019.05.013
      Sun, Y., Teng, F. Z., Pang, K. N., et al., 2021. Multistage Mantle Metasomatism Deciphered by Mg-Sr-Nd-Pb Isotopes in the Leucite Hills Lamproites. Contributions to Mineralogy and Petrology, 176(6): 45. https://doi.org/10.1007/s00410-021-01801-9
      Teng, F. Z., Dauphas, N., Watkins, J. M., 2017. Non- Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26. https://doi.org/10.2138/rmg.2017.82.1
      Teng, F. Z., Hu, Y., Ma, J. L., et al., 2020. Potassium Isotope Fractionation during Continental Weathering and Implications for Global K Isotopic Balance. Geochimica et Cosmochimica Acta, 278: 261-271. https://doi.org/10.1016/j.gca.2020.02.029
      Tian, S. H., Yang, Z. S., Hou, Z. Q., et al., 2017. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41: 29-50. https://doi.org/10.1016/j.gr.2015.09.005
      Tommasini, S., Avanzinelli, R., Conticelli, S., 2011. The Th/La and Sm/La Conundrum of the Tethyan Realm Lamproites. Earth and Planetary Science Letters, 301(3-4): 469-478. https://doi.org/10.1016/j.epsl.2010.11.023
      Tuller-Ross, B., Marty, B., Chen, H., et al., 2019a. Potassium Isotope Systematics of Oceanic Basalts. Geochimica et Cosmochimica Acta, 259: 144-154. https://doi.org/10.1016/j.gca.2019.06.001
      Tuller-Ross, B., Savage, P. S., Chen, H., et al., 2019b. Potassium Isotope Fractionation during Magmatic Differentiation of Basalt to Rhyolite. Chemical Geology, 525: 37-45. https://doi.org/10.1016/j.chemgeo.2019.07.017
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post- Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1/2): 123-133. https://doi.org/10.1016/S0012-821X(01)00315-6
      Wang, K., Close, H. G., Tuller-Ross, B., et al., 2020. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth and Space Chemistry, 4(7): 1010-1017.https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.0c00047 doi: 10.1021/acsearthspacechem.0c00047
      Wang, K., Ionov, D. A., 2023. Potassium Isotope Evidence for Slab-Derived Fluids in the Sub-Arc Mantle. Earth and Planetary Science Letters, 619: 118315. https://doi.org/10.1016/j.epsl.2023.118315
      Wang, K., Li, W. Q., Li, S. L., et al., 2021a. Geochemistry and Cosmochemistry of Potassium Stable Isotopes. Geochemistry, 81(3): 125786. https://doi.org/10.1016/j.chemer.2021.125786
      Wang, Z. Z., Teng, F. Z., Prelević, D., et al., 2021b. Potassium Isotope Evidence for Sediment Recycling into the Orogenic Lithospheric Mantle. Geochemical Perspectives Letters, 18: 43-47. https://doi.org/10.7185/geochemlet.2123
      Wang, Z. Z., Teng, F. Z., Busigny, V., et al., 2022a. Evidence from HP/UHP Metasediments for Recycling of Isotopically Heterogeneous Potassium into the Mantle. American Mineralogist, 107(3): 350-356. https://doi.org/10.2138/am-2021-7923
      Wang, Z. Z., Teng, F. Z., Wu, F. Y., et al., 2022b. Extensive Crystal Fractionation of High-Silica Magmas Revealed by K Isotopes. Science Advances, 8(47): eabo4492. https://doi.org/10.1126/sciadv.abo4492
      Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      Xu, Y. G., Menzies, M. A., Thirlwall, M. F., et al., 2001. Exotic Lithosphere Mantle beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks. Geology, 29(9): 863.https://doi.org/10.1130/0091-7613(2001)0290863: elmbtw>2.0.co;2 doi: 10.1130/0091-7613(2001)0290863:elmbtw>2.0.co;2
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeng, H., Rozsa, V. F., Nie, N. X., et al., 2019. Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water. ACS Earth and Space Chemistry, 3(11): 2601-2612. https://doi.org/10.1021/acsearthspacechem.9b00180
      Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge- Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhu, Y., Lai, S. C., Qin, J. F., et al., 2021. Neoproterozoic Metasomatized Mantle beneath the Western Yangtze Block, South China: Evidence from Whole-Rock Geochemistry and Zircon U-Pb-Hf Isotopes of Mafic Rocks. Journal of Asian Earth Sciences, 206: 104616. https://doi.org/10.1016/j.jseaes.2020.104616
      莫宣学, 赵志丹, 朱弟成, 等, 2009. 西藏南部印度‒亚洲碰撞带岩石圈: 岩石学‒地球化学约束 . 地球科学, 34(1): 17-27.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (385) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return