Citation: | Liu Jiawen, Tian Shihong, Geng Xianlei, Liang Zhengwei, Chen Lu, 2024. Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region. Earth Science, 49(11): 3930-3945. doi: 10.3799/dqkx.2024.100 |
Berglund, M., Wieser, M. E., 2011. Isotopic Compositions of the Elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83(2): 397-410. https://doi.org/10.1351/pac-rep-10-06-02
|
Chen, H., Liu, X. M., Wang, K., 2020. Potassium Isotope Fractionation during Chemical Weathering of Basalts. Earth and Planetary Science Letters, 539: 116192. https://doi.org/10.1016/j.epsl.2020.116192
|
Chen, H., Saunders, N. J., Jerram, M., et al., 2021. High-Precision Potassium Isotopic Measurements by Collision Cell Equipped MC-ICP-MS. Chemical Geology, 578: 120281. https://doi.org/10.1016/j.chemgeo.2021.120281
|
Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
|
Cocks, L. R. M., Torsvik, T. H., 2013. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 117: 40-79. https://doi.org/10.1016/j.earscirev.2012.12.001
|
Dalslåen, B. H., Gasser, D., Grenne, T., et al., 2020. Ordovician Shoshonitic to Ultrapotassic Volcanism in the Central Norwegian Caledonides: The Result of Sediment Subduction, Mantle Metasomatism and Mantle Partial Melting. Lithos, 356: 105372. https://doi.org/10.1016/j.lithos.2020.105372
|
Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268-299. https://doi.org/10.1016/j.earscirev.2014.05.015
|
Du, D. H., Luo, X. L., Wang, X. L., et al., 2024. A Recipe for Making Potassium-Rich Magmas in Collisional Orogens: New Insights from K and Fe Isotopes. Earth and Planetary Science Letters, 632: 118642. https://doi.org/10.1016/j.epsl.2024.118642
|
Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3/4/5/6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-T
|
Förster, M. W., Buhre, S., Xu, B., et al., 2019. Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle. Minerals, 10(1): 41. https://doi.org/10.3390/min10010041
|
Gan, T., Huang, Z. L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018
|
Geng, X. L., Tian, S. H., Xu, W., et al., 2024. A Two-Stage Geodynamic Model for Post-Collisional Potassic-Ultrapotassic Magmatism in Southeast Tibet. Journal of Geophysical Research (Solid Earth), 129(8): e2024JB028887. https://doi.org/10.1029/2024JB028887
|
Guo, Z. F., Hertogen, J., Liu, J. Q., et al., 2005. Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis. Journal of Petrology, 46(1): 33-78. https://doi.org/10.1093/petrology/egh061
|
Gupta, A. K., 2015. Origin of Potassium-Rich Silica- Deficient Igneous Rocks. Springer New Delhi, India, https://doi.org/10.1007/978-81-322-2083-1
|
Hille, M., Hu, Y., Huang, T. Y., et al., 2019. Homogeneous and Heavy Potassium Isotopic Composition of Global Oceans. Science Bulletin, 64(23): 1740-1742. https://doi.org/10.1016/j.scib.2019.09.024
|
Hu, Y., Teng, F. Z., Chauvel, C., 2021a. Potassium Isotopic Evidence for Sedimentary Input to the Mantle Source of Lesser Antilles Lavas. Geochimica et Cosmochimica Acta, 295: 98-111. https://doi.org/10.1016/j.gca.2020.12.013
|
Hu, Y., Teng, F. Z., Helz, R. T., et al., 2021b. Potassium Isotope Fractionation during Magmatic Differentiation and the Composition of the Mantle. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB021543. https://doi.org/10.1029/2020JB021543
|
Hu, Y., Teng, F. Z., Plank, T., et al., 2020. Potassium Isotopic Heterogeneity in Subducting Oceanic Plates. Science Advances, 6(49): eabb2472. https://doi: 10.1126/sciadv.abb2472
|
Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Mineralogical and Geochemical Constraints on the Petrogenesis of Post-Collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China. Journal of Petrology, 51(8): 1617-1654. https://doi.org/10.1093/petrology/egq032
|
Huang, F., Lundstrom, C. C., Glessner, J., et al., 2009. Chemical and Isotopic Fractionation of Wet Andesite in a Temperature Gradient: Experiments and Models Suggesting a New Mechanism of Magma Differentiation. Geochimica et Cosmochimica Acta, 73(3): 729-749. https://doi.org/10.1016/j.gca.2008.11.012
|
Huang, T. Y., Teng, F. Z., Rudnick, R. L., et al., 2020. Heterogeneous Potassium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 278: 122-136. https://doi.org/10.1016/j.gca.2019.05.022
|
Huang, T. Y., Teng, F. Z., Wang, Z. Z., et al., 2023. Potassium Isotope Fractionation during Granitic Magmatic Differentiation: Mineral-Pair Perspectives. Geochimica et Cosmochimica Acta, 343: 196-211. https://doi.org/10.1016/j.gca.2022.11.006
|
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
|
Le Maitre, R. W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 1-208. https://doi.org/10.1017/CBO9780511535581
|
Li, S. L., Li, W. Q., Beard, B. L., et al., 2019a. K Isotopes as a Tracer for Continental Weathering and Geological K Cycling. Proceedings of the National Academy of Sciences of the United States of America, 116(18): 8740-8745. https://doi.org/10.1073/pnas.1811282116
|
Li, W. Q., Li, S. L., Beard, B. L., 2019b. Geological Cycling of Potassium and the K Isotopic Response: Insights from Loess and Shales. Acta Geochimica, 38(4): 508-516. https://doi.org/10.1007/s11631-019-00345-x
|
Li, Y. H., Wang, W. Z., Huang, S. C., et al., 2019c. First-Principles Investigation of the Concentration Effect on Equilibrium Fractionation of K Isotopes in Feldspars. Geochimica et Cosmochimica Acta, 245: 374-384. https://doi.org/10.1016/j.gca.2018.11.006
|
Li, Y. H., Wang, W. Z., Wu, Z. Q., et al., 2019d. First-Principles Investigation of Equilibrium K Isotope Fractionation among K-Bearing Minerals. Geochimica et Cosmochimica Acta, 264: 30-42. https://doi.org/10.1016/j.gca.2019.07.038
|
Li, W. S., Coogan, L. A., Wang, K., et al., 2024. Hydrothermal Origin of Heavy Potassium Isotope Compositions in Altered Oceanic Crust: Implications for Tracing the Elemental Cycle. Earth and Planetary Science Letters, 625: 118448. https://doi.org/10.1016/j.epsl.2023.118448
|
Li, W. S., Liu, X. M., Wang, K., et al., 2022. Potassium Isotope Signatures in Modern Marine Sediments: Insights into Early Diagenesis. Earth and Planetary Science Letters, 599: 117849. https://doi.org/10.1016/j.epsl.2022.117849
|
Liu, D., Zhao, Z. D., Depaolo, D. J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet: Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268-271: 48-64. https://doi: 10.1016/j.lithos.2016.10.034
|
Liu, H. Y., Wang, K., Sun, W. D., et al., 2020. Extremely Light K in Subducted Low-T Altered Oceanic Crust: Implications for K Recycling in Subduction Zone. Geochimica et Cosmochimica Acta, 277: 206-223. https://doi.org/10.1016/j.gca.2020.03.025
|
Liu, H. Y., Xue, Y. Y., Wang, K., et al., 2021. Contributions of Slab-Derived Fluids to Ultrapotassic Rocks Indicated by K Isotopes. Lithos, 396: 106202. https://doi.org/10.1016/j.lithos.2021.106202
|
Lu, Y. J., Kerrich, R., McCuaig, T. C., et al., 2013. Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology, 54(7): 1309-1348. https://doi.org/10.1093/petrology/egt013
|
Lu, Y. J., McCuaig, T. C., Li, Z. X., et al., 2015. Paleogene Post-Collisional Lamprophyres in Western Yunnan, Western Yangtze Craton: Mantle Source and Tectonic Implications. Lithos, 233: 139-161. https://doi.org/10.1016/j.lithos.2015.02.003
|
McDonough, W., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
|
Miao, Z., Li, X. Q., Zhao, Z. D., et al., 2023. Deciphering Mantle Heterogeneity Associated with Ancient Subduction-Related Metasomatism: Insights from Mg-K Isotopes in Potassic Alkaline Rocks. Geochimica et Cosmochimica Acta, 348: 258-277. https://doi.org/10.1016/j.gca.2023.03.020
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post- Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.13999
|
Mo, X. X., Zhao, Z. D., Zhu, D. C., et al., 2009. On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and Geochemical Constraints. Earth Science, 34(1): 17-27 (in Chinese with English abstract).
|
Murphy, D. T., Collerson, K. D., Kamber, B. S., 2002. Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments. Journal of Petrology, 43(6): 981-1001. https://doi.org/10.1093/petrology/43.6.981
|
Müller, D., Groves, D. I., 1993. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 8(5): 383-406. https://doi.org/10.1016/0169-1368(93)90035-W
|
Palmer, M. R., Ersoy, E. Y., Akal, C., et al., 2019. A Short, Sharp Pulse of Potassium-Rich Volcanism during Continental Collision and Subduction. Geology, 47(11): 1079-1082. https://doi.org/10.1130/g45836.1
|
Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
|
Parendo, C. A., Jacobsen, S. B., Wang, K., 2017. K Isotopes as a Tracer of Seafloor Hydrothermal Alteration. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1827-1831. https://doi.org/10.1073/pnas.1609228114
|
Philpotts, J. A., Schnetzler, C. C., 1970. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 34(3): 307-322. https://doi.org/10.1016/0016-7037(70)90108-0
|
Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry. Elsevier, Amsterdam, 607-629. https://doi.org/10.1016/b978-0-08-095975-7.00319-3
|
Prelević, D., Foley, S. F., Romer, R., et al., 2008. Mediterranean Tertiary Lamproites Derived from Multiple Source Components in Postcollisional Geodynamics. Geochimica et Cosmochimica Acta, 72(8): 2125-2156. https://doi.org/10.1016/j.gca.2008.01.029
|
Prelević, D., Jacob, D. E., Foley, S. F., 2013. Recycling Plus: A New Recipe for the Formation of Alpine- Himalayan Orogenic Mantle Lithosphere. Earth and Planetary Science Letters, 362: 187-197. https://doi.org/10.1016/j.epsl.2012.11.035
|
Richter, F. M., Bruce Watson, E., Chaussidon, M., et al., 2014. Isotope Fractionation of Li and K in Silicate Liquids by Soret Diffusion. Geochimica et Cosmochimica Acta, 138: 136-145. https://doi.org/10.1016/j.gca.2014.04.012
|
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
|
Santiago Ramos, D. P., Coogan, L. A., Murphy, J. G., et al., 2020. Low-Temperature Oceanic Crust Alteration and the Isotopic Budgets of Potassium and Magnesium in Seawater. Earth and Planetary Science Letters, 541: 116290. https://doi.org/10.1016/j.epsl.2020.116290
|
Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2021. Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the Genesis of Potassium-Rich Adakite-Like Intrusions in Collisional Zones. Journal of Petrology, 62(11): egab066. https://doi.org/10.1093/petrology/egab066
|
Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2022. Pre-Late Eocene Position of the Lüchun-Jinping Microblock in Western Yangtze Craton: Constraints from Eocene-Oligocene Lamprophyres in Southeastern Tibet. Lithos, 414: 106622. https://doi.org/10.1016/j.lithos.2022.106622
|
Soder, C. G., Romer, R. L., 2018. Post-Collisional Potassic-Ultrapotassic Magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction. Journal of Petrology, 59(6): 1007-1034. https://doi.org/10.1093/petrology/egy053
|
Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1/2/3/4): 169-185. https://doi.org/10.1016/0012-821X(94)00263-X
|
Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Sun, Y., Teng, F. Z., Hu, Y., et al., 2020. Tracing Subducted Oceanic Slabs in the Mantle by Using Potassium Isotopes. Geochimica et Cosmochimica Acta, 278: 353-360. https://doi.org/10.1016/j.gca.2019.05.013
|
Sun, Y., Teng, F. Z., Pang, K. N., et al., 2021. Multistage Mantle Metasomatism Deciphered by Mg-Sr-Nd-Pb Isotopes in the Leucite Hills Lamproites. Contributions to Mineralogy and Petrology, 176(6): 45. https://doi.org/10.1007/s00410-021-01801-9
|
Teng, F. Z., Dauphas, N., Watkins, J. M., 2017. Non- Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26. https://doi.org/10.2138/rmg.2017.82.1
|
Teng, F. Z., Hu, Y., Ma, J. L., et al., 2020. Potassium Isotope Fractionation during Continental Weathering and Implications for Global K Isotopic Balance. Geochimica et Cosmochimica Acta, 278: 261-271. https://doi.org/10.1016/j.gca.2020.02.029
|
Tian, S. H., Yang, Z. S., Hou, Z. Q., et al., 2017. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41: 29-50. https://doi.org/10.1016/j.gr.2015.09.005
|
Tommasini, S., Avanzinelli, R., Conticelli, S., 2011. The Th/La and Sm/La Conundrum of the Tethyan Realm Lamproites. Earth and Planetary Science Letters, 301(3-4): 469-478. https://doi.org/10.1016/j.epsl.2010.11.023
|
Tuller-Ross, B., Marty, B., Chen, H., et al., 2019a. Potassium Isotope Systematics of Oceanic Basalts. Geochimica et Cosmochimica Acta, 259: 144-154. https://doi.org/10.1016/j.gca.2019.06.001
|
Tuller-Ross, B., Savage, P. S., Chen, H., et al., 2019b. Potassium Isotope Fractionation during Magmatic Differentiation of Basalt to Rhyolite. Chemical Geology, 525: 37-45. https://doi.org/10.1016/j.chemgeo.2019.07.017
|
Turner, S., Arnaud, N., Liu, J., et al., 1996. Post- Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
|
Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1/2): 123-133. https://doi.org/10.1016/S0012-821X(01)00315-6
|
Wang, K., Close, H. G., Tuller-Ross, B., et al., 2020. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth and Space Chemistry, 4(7): 1010-1017.https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.0c00047 doi: 10.1021/acsearthspacechem.0c00047
|
Wang, K., Ionov, D. A., 2023. Potassium Isotope Evidence for Slab-Derived Fluids in the Sub-Arc Mantle. Earth and Planetary Science Letters, 619: 118315. https://doi.org/10.1016/j.epsl.2023.118315
|
Wang, K., Li, W. Q., Li, S. L., et al., 2021a. Geochemistry and Cosmochemistry of Potassium Stable Isotopes. Geochemistry, 81(3): 125786. https://doi.org/10.1016/j.chemer.2021.125786
|
Wang, Z. Z., Teng, F. Z., Prelević, D., et al., 2021b. Potassium Isotope Evidence for Sediment Recycling into the Orogenic Lithospheric Mantle. Geochemical Perspectives Letters, 18: 43-47. https://doi.org/10.7185/geochemlet.2123
|
Wang, Z. Z., Teng, F. Z., Busigny, V., et al., 2022a. Evidence from HP/UHP Metasediments for Recycling of Isotopically Heterogeneous Potassium into the Mantle. American Mineralogist, 107(3): 350-356. https://doi.org/10.2138/am-2021-7923
|
Wang, Z. Z., Teng, F. Z., Wu, F. Y., et al., 2022b. Extensive Crystal Fractionation of High-Silica Magmas Revealed by K Isotopes. Science Advances, 8(47): eabo4492. https://doi.org/10.1126/sciadv.abo4492
|
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
|
Xu, Y. G., Menzies, M. A., Thirlwall, M. F., et al., 2001. Exotic Lithosphere Mantle beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks. Geology, 29(9): 863.https://doi.org/10.1130/0091-7613(2001)0290863: elmbtw>2.0.co;2 doi: 10.1130/0091-7613(2001)0290863:elmbtw>2.0.co;2
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Zeng, H., Rozsa, V. F., Nie, N. X., et al., 2019. Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water. ACS Earth and Space Chemistry, 3(11): 2601-2612. https://doi.org/10.1021/acsearthspacechem.9b00180
|
Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge- Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
|
Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
|
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2021. Neoproterozoic Metasomatized Mantle beneath the Western Yangtze Block, South China: Evidence from Whole-Rock Geochemistry and Zircon U-Pb-Hf Isotopes of Mafic Rocks. Journal of Asian Earth Sciences, 206: 104616. https://doi.org/10.1016/j.jseaes.2020.104616
|
莫宣学, 赵志丹, 朱弟成, 等, 2009. 西藏南部印度‒亚洲碰撞带岩石圈: 岩石学‒地球化学约束 . 地球科学, 34(1): 17-27.
|