• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Wang Jiawei, Wang Dongsheng, Wang Gang, Wu Yudong, 2024. Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation. Earth Science, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105
    Citation: Wang Jiawei, Wang Dongsheng, Wang Gang, Wu Yudong, 2024. Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation. Earth Science, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105

    Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation

    doi: 10.3799/dqkx.2024.105
    • Received Date: 2024-07-17
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • In this paper, systematic analysis of the Yujingshan monzogranite is conducted to investigate its petrogenesis and source. The results show that the crystallization age of the monzogranite is 125 ± 1 Ma. The εHf (t) values of zircons are between -6.5 and -2.0 and the two-stage model ages (tDM2(Hf)) are 1.6-1.3 Ga, which suggests that the magma was derived by partial melting of Mesoproterozoic crust. Geochemically, the Yujingshan pluton belongs to peraluminous and high K calc-alkaline series with A/CNK=1.10-1.15 and K2O/Na2O=1.01-1.45. The ΣREE of the Yujingshan pluton is relatively low (ΣREE=48.54×10-6~80.32×10-6). LREE and HREE fractionation is not significant ((La/Yb)N=2.91-4.32), but there is a negative Eu anomaly (σEu=0.19-0.28). The samples are enriched with large ion lithophilic elements (Rb, Sr, Th, U, K) and depleted in high field strength elements (Nb and Ti). The enriched Sm-Nd isotopic composition [εNd(t=125) of -10.1 to -8.9] indicates that the magma originated from remelting of ancient crustal materials. Comprehensive analysis shows that the Yujingshan monzogranite was generated by the partial melting of Mesoproterozoic argillaceous rocks and experienced fractional crystallization. The magma belongs to highly differentiated S-type granites, which formed in a tectonic regime transformation process going from compression to extension during the northwest subduction of the paleo-Pacific plate. Subsequently, ductile shearing occurred during the Late Cretaceous, resulting in mylonitization of the Yujingshan pluton. This research, combined with regional magmatic and structural geology data, suggests that the tectonic regime transformation in the South China block occurred at Late Mesozoic, and that regional extension continued until the late Early Cretaceous.

       

    • loading
    • Anderson, D. L., 1983. Chemical Composition of the Mantle. Journal of Geophysical Research: Solid Earth, 88(Suppl. 1): 41-52. https://doi.org/10.1029/jb088is01p00b41
      Bi, H., Tan, K. R., Wu, Q. H., et al., 1996. Orogenesis-Basinogenesis in Mount Lu-Poyang Lake in North Jiangxi. Geology of Jiangxi, (1): 3-12(in Chinese with English abstract).
      Cui, X. J., Zhao, G., Chen, X. Y., et al., 2002. Study of the 40Ar/39Ar Isotopic Age for Mesozoic Tectonothermal Event in Lushan Mountain. Journal of Chengdu University of Technology, 29(6): 646-649(in Chinese with English abstract).
      Dong, S. W., Xue, H. M., Xiang, X. K., et al., 2010. The Discovery of Neoproterozoic Pillow Lava in Spilite-Ceratophyre of Lushan Area, Northern Jiangxi Province, and Its Geological Significance. Geology in China, 37(4): 1021-1033(in Chinese with English abstract).
      Gao, L. Z., Huang, Z. Z., Ding, X. Z., et al., 2012. The Geochronological Relationship between the Shaojiwa Formation and the Xingzi Complex Group in Northwestern Jiangxi and the Constraints on Zircon SHRIMP U-Pb Age. Acta Geoscientica Sinica, 33(3): 295-304(in Chinese with English abstract).
      Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005
      Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131: 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Guan, J. P., He, B., Li, D. W., 2010. SIMS U-Pb Dating of the Detrital Zircons from the Xingzi Group in Lushan Area and Its Geological Significance. Geotectonica et Metallogenia, 34(3): 402-407(in Chinese with English abstract).
      Halliday, A. N., Shepherd, T. J., Dickin, A. P., et al., 1990. Sm-Nd Evidence for the Age and Origin of a Mississippi Valley Type Ore Deposit. Nature, 344: 54-56. https://doi.org/10.1038/344054a0
      Li, J. L., Sun, S., Xu, J. H., et al., 1989. New Evidences about the Evolution of the South Cathay Orogenic Belt. Chinese Journal of Geology, 24(3): 217-225(in Chinese with English abstract).
      Li, W. X., Zhou, X. M., Li, X. H., et al., 2001. Zircon U-Pb Dating of Pegmatite from Xingzi Metamorphic Core Complex of Lushan Mountain and Its Geological Implication. Earth Science, 26(5): 491-495(in Chinese with English abstract).
      Li, X. G., Yang, K. G., Zhu, Q. B., 2010. Zircon LA-ICP-MS U-Pb Dating of Granitic Intrusion in the Core of Lushan Metamorphic Core Complex and Its Geological Significance. Journal of Mineralogy and Petrology, 30(4): 36-42(in Chinese with English abstract).
      Lin, W., Faure, M., Monie, P., et al., 2000. Tectonics of SE China: New Insights from the Lushan Massif (Jiangxi Province). Tectonics, 19(5): 852-870. https://doi.org/10.1029/2000tc900009
      Lin, W., Xu, D. R., Hou, Q. L., et al., 2019. Early Cretaceous Extensional Dome and Related Polymetallic Mineralization in the Central and Eastern China. Geotectonica et Metallogenia, 43(3): 409-430(in Chinese with English abstract).
      Liu, L., Liu, L., Xu, Y. G., 2021. Mesozoic Intraplate Tectonism of East Asia Due to Flat Subduction of a Composite Terrane Slab. Earth-Science Reviews, 214: 103505. https://doi.org/10.1016/j.earscirev.2021.103505
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Liu, Y. Y., Ma, C. Q., Lü, Z. Y., et al., 2012. Zircon U-Pb Age, Element and Sr-Nd-Hf Isotope Geochemistry of Late Mesozoic Magmatism from the Guichi Metallogenic District in the Middle and Lower Reaches of the Yangtze River Region. Acta Petrologica Sinica, 28(10): 3287-3305(in Chinese with English abstract).
      Ma, C. X., Xiang, X. K., 1993. Preliminary Study of the Nd Isotopic Model Ages of the Precambrian Metamorphic Stratum in Northeastern Jiangxi Province. Chinese Journal of Geology, 28(2): 145-150(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, J. J., Xu, Y. G., He, B., 2024. Interaction between Magmatism and Deformation in the Mesozoic of the Lushan Area, Eastern China. Chinese Science Bulletin, 69(2): 301-316(in Chinese with English abstract). doi: 10.1360/TB-2023-0122
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Shi, Z. G., Gao, L. Z., Li, T. D., et al., 2014. Zircon U-Pb Isotopes Dating of Hanyangfeng Formation in Lushan Area and Its Geological Significance. Geology in China, 41(2): 326-334(in Chinese with English abstract).
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Shu, L. S., Zhou, X. M., Deng, P., et al., 2004. Geological Features and Tectonic Evolution of Meso-Cenozoic Basins in Southeastern China. Geological Bulletin of China, 23(9): 876-884(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Ocean Basins 27. Geological Society, London, Special Publication, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Shu, L. S., Zhu, W. B., et al., 2000. Mesozoic Tectonic Events and the Geochronological Dating in the Lushan Massif, Jiangxi Province. Journal of Naijing University, 36(3): 363-367.
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
      Wang, D. S., Li, J. W., She, H. Q., et al., 2023. Late Jurassic Volcanism Deduced from Geochemical, Geochronological, and Sr-Nd-Hf Isotopic Composition Characteristics of the Nanyuan Formation, South China. Acta Geologica Sinica, 97(2): 249-468.
      Wang, J. L., He, B., Guan, J. P., 2013. Study on Age and Mechanism of the Metamorphism of the Xingzi Group in the Lushan Area, Jiangxi Province. Geotectonica et Metallogenia, 37(3): 489-498(in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters. 64: 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Watson, E. B., Harrison, T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wilson, M. 1989. Igneous Petrogenesis a Global Tectonic Approach. Unwin Hyman, London, 11-40. https://doi.org/10.1007/978-1-4020-6788-4
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica(Terrae), 47(7): 745-765(in Chinese).
      Xiang, X. K., Xu, J. H., Xu, K. L., 1993. Characteristics of Metamorphic Core Complexes of Xingzi Group and Its Geological Significance. Mineral Resources and Geology, 7(6): 401-407(in Chinese with English abstract).
      Xie, G. G., Li, J. H., Li, W. X., et al., 1997. U-Pb Zircon Dating of Presinian Rocks at Lushan Mt. and Its Geological Implication. Chinese Journal of Geology (Scientia Geologica Sinica), 32(1): 110-115(in Chinese with English abstract).
      Yang, F., Song, C. Z., Ren, S. L., et al., 2015. Metamorphism and Deformation of the Lushan Metamorphic Core Complex and Their Tectonic Significance. Geological Review, 61(4): 752-766(in Chinese with English abstract).
      Zhang, H. X., Zhang, B. Y., 2002. The High Sr, Low Y Granite in the Metamorphic Core Complex and Its Geological Significance. Journal of Mineralogy and Petrology, 22(4): 16-20(in Chinese with English abstract).
      Zhu, Q. B., Yang, K. G., Wang, Y., 2010. Extensional Detachment and Magmatism of the Lushan Metamorphic Core Complex: Constraints from 40Ar/39Ar and U-Pb Geochronology. Geotectonica et Metallogenia, 34(3): 391-401(in Chinese with English abstract).
      毕华, 谭克仁, 吴堑虹, 等, 1996. 赣北庐山-鄱阳湖的造山-造盆作用. 江西地质, 10(1): 3-12.
      崔学军, 赵赣, 陈祥云, 等, 2002. 江西庐山中生代构造事件的40Ar/39Ar同位素年龄研究. 成都理工学院学报, 29(6): 646-649.
      董树文, 薛怀民, 项新葵, 等, 2010. 赣北庐山地区新元古代细碧-角斑岩系枕状熔岩的发现及其地质意义. 中国地质, 37(4): 1021-1033.
      高林志, 黄志忠, 丁孝忠, 等, 2012. 庐山筲箕洼组与星子岩群年代地层关系及SHRIMP锆石U-Pb年龄的制约. 地球学报, 33(3): 295-304.
      关俊朋, 何斌, 李德威, 2010. 庐山地区星子群碎屑锆石SIMS U-Pb年龄及其地质意义. 大地构造与成矿学, 34(3): 402-407.
      李继亮, 孙枢, 许靖华, 等, 1989. 南华夏造山带构造演化的新证据. 地质科学, 24(3): 217-225.
      李武显, 周新民, 李献华, 等, 2001. 庐山"星子变质核杂岩" 中伟晶岩锆石U-Pb年龄及其地质意义. 地球科学, 26(5): 491-495. http://www.earth-science.net/article/id/1039
      李学刚, 杨坤光, 朱清波, 2010. 庐山变质核杂岩核部岩体锆石LA-ICP-MS U-Pb年代学研究及其地质意义. 矿物岩石, 30(4): 36-42.
      林伟, 许德如, 侯泉林, 等, 2019. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿. 大地构造与成矿学, 43(3): 409-430.
      刘园园, 马昌前, 吕昭英, 等, 2012. 长江中下游贵池矿集区燕山期岩浆作用及其地质意义: 年代学、地球化学及Sr-Nd-Hf同位素证据. 岩石学报, 28(10): 3287-3305.
      马长信, 项新葵, 1993. 赣东北前寒武纪变质地层钕模式年龄初步研究. 地质科学, 28(2): 145-150.
      莫佳君, 徐义刚, 何斌, 2024. 庐山地区晚中生代深源岩浆与浅表构造变形的相互作用. 科学通报, 69(2): 301-316.
      史志刚, 高林志, 李廷栋, 等, 2014. 庐山汉阳峰组变流纹岩锆石U-Pb同位素定年及其地质意义. 中国地质, 41(2): 326-334.
      舒良树, 周新民, 邓平, 等, 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(增刊2): 876-884.
      王继林, 何斌, 关俊朋, 2013. 江西庐山地区星子群变质时代及变质机制探讨. 大地构造与成矿学, 37(3): 489-498.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      项新葵, 许建华, 徐寇龙, 1993. 星子群变质核杂岩的特征及其地质意义. 矿产与地质, 7(6): 401-407.
      谢国刚, 李均辉, 李武显, 等, 1997. 庐山前震旦纪岩石中锆石U-Pb法定年与其地质意义. 地质科学, 32(1): 110-115.
      杨帆, 宋传中, 任升莲, 等, 2015. 庐山变质核杂岩的变质变形及构造意义. 地质论评, 61(4): 752-766.
      张海祥, 张伯友, 2002. 变质核杂岩中高Sr低Y型花岗岩的发现及其地质意义. 矿物岩石, 22(4): 16-20.
      朱清波, 杨坤光, 王艳, 2010. 庐山变质核杂岩伸展拆离和岩浆作用的年代学约束. 大地构造与成矿学, 34(3): 391-401.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (288) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return