• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Ci Qiong, Zheng Youye, Wu Song, Liu Peng, Zhao Yayun, Gong Fuzhi, Du Zezhong, Hou Yitao, 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120
    Citation: Ci Qiong, Zheng Youye, Wu Song, Liu Peng, Zhao Yayun, Gong Fuzhi, Du Zezhong, Hou Yitao, 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120

    Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang

    doi: 10.3799/dqkx.2024.120
    • Received Date: 2024-07-27
    • Publish Date: 2025-04-25
    • The Zhunuo ore concentration district is located in the western Gangdese metallogenic belt, Xizang. The area contains a large NE-SW geochemistry anomaly, which exhibits favorable metallogenic conditions and is a key block for the deployment of a new round of breakthrough strategic actions in mineral exploration. The Beimulang deposit is a newly discovered porphyry Cu-Mo deposit after the Zhunuo deposit in the area. Beimulang contains a mental reserve of 1.3 million tons averaging 0.51% Cu. Magmatic activity in the deposit is strong, including pre-mineralization quartz porphyry (~49.7 Ma), inter-mineralization monzogranite porphyry(~14.8-14.0 Ma), monzogranite(~14.1 Ma), diorite porphyry, and late-mineralization granite porphyry (~11.0-11.7 Ma), lamprophyre. Mineralization occurs mainly in the main inter-mineralization and pre-mineralization intrusions. Molybdenite Re-Os dating shows that main-stage mineralization at Beimulang formed in 13.8±0.1 Ma. Three breccia types have been observed in the deposit, typically located in the apical parts of monzogranite porphyry: (1) tourmaline-cemented breccia, (2) clast-supported breccia, and (3) quartz-pyrite-cemented breccia. Hydrothermal alteration is strongly developed and includes central potassic, peripheral propylitic, and shallow phyllic alteration. The three kinds of alteration are superimposed on each other. Biotite alteration is most closely associated with Cu mineralization. The discovery of the Beimulang deposit confirms the prevailing view that large and super-large porphyry Cu deposits can be formed in areas that cannot be formed or have low ore-forming potential, which provides a new example for further study of the porphyry mineralization process and deep metallogenic mechanism in collision orogenic belt. The discovery of the Beimulang Cu-Mo deposit is attributed to the demonstration of comprehensive exploration methods such as geology, stream sediment geochemical, and hyperspectral analysis. In particular, short-wave infrared spectroscopy technology can effectively trace hydrothermal/mineralization centers. The discovery of the deposit has pointed out the direction for searching for similar deposits in the region and also provided important support for the Zhunuo ore concentration district to become another new ten million tons of copper resource base in China.

       

    • loading
    • Ai, Y. M., Xiao, B., Zhao, J. F., et al., 2024. Ages, Petrogenesis and Metallogenesis Implications of the Miocene Adakite-Like Igneous Rocks in the Beimulang Porphyry Cu Deposit, Southern Tibet. Ore Geology Reviews, 173: 106249. https://doi.org/10.1016/j.oregeorev.2024.106249
      Chen, H. Y., Zhang, S. T., Chu, G. B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04
      Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006
      Ding, L. I. N., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061
      Du, Z. Z., Cheng, Z. Z., Yu, X. F., et al., 2023. Geochronology and Petrogeochemistry of Miocene Porphyries from the Beimulang Deposit, Western Gangdese Copper Belt. Ore Geology Reviews, 162: 105682. https://doi.org/10.1016/j.oregeorev.2023.105682
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X
      Hou, Z. Q., Yang, Z., Lu, Y., et al., 2015. A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/G36362.1
      Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815(in Chinese with English abstract).
      Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638(in Chinese with English abstract).
      Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
      Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. doi: 10.1016/j.oregeorev.2022.104823
      Lü, F. J., Hao, Y. S., Shi, J., et al., 2009. Alteration Remote Sensing Anomaly Extraction Based on Aster Remote Sensing Data. Acta Geoscientica Sinica, 30(2): 271-276(in Chinese with English abstract). http://www.oalib.com/paper/1558004
      Mo, X., Niu, Y., Dong, G., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250: 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      Pour, A. B., Hashim, M., Marghany, M., 2011. Using Spectral Mapping Techniques on Short Wave Infrared Bands of ASTER Remote Sensing Data for Alteration Mineral Mapping in SE Iran. International Journal of Physical Sciences, 6(4): 917-929.
      Ren, H., Zheng, Y. Y., Wu, S., et al., 2023. Short-Wavelength Infrared Characteristics and Composition of White Mica in the Demingding Porphyry Cu-Mo Deposit, Gangdese Belt, Tibet: Implications for Mineral Exploration. Ore Geology Reviews, 105833.
      Sun, X., Zheng, Y. Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406(in Chinese with English abstract).
      Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7): 1967-2001. https://doi.org/10.2113/econgeo.109.7.1967
      Wang, R., Luo, C. H., Xia, W., et al., 2021. Role of Alkaline Magmatism in Formation of Porphyry Deposits in Non-arc Settings: Gangdese and Sanjiang Metallogenic Belts. SEG Special Publications, 24: 205-229. https://doi: 10.5382/SP.24.12
      Wang, R., Richards, J. P., Zhou, L. M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews, 150: 68-94. doi: 10.1016/j.earscirev.2015.07.003
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi: 10.1016/j.earscirev.2018.02.019
      Wang, R., Weinberg, R. F., Zhu, D. C., et al., 2022. The Impact of a Tear in the Subducted Indian Plate on the Miocene Geology of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 134(3-4): 681-690. https://doi.org/10.1130/B36023.1
      Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
      Yang, J. Z., Fang, H. B., Zhang, Y. J., et al., 2003. Remote Sensing Anomaly Extraction in Important Metallogenic Belts of Western China. Remote Sensing for Land & Resources, 15(3): 50-53(in Chinese with English abstract).
      Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3): 324-336. https://doi.org/10.1007/s00126-005-0479-7
      Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 22: 133-187. https://doi.org/10.5382/SP.22.05
      Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300. https://doi: 10.5382/SP.19.11
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211
      Zhao, Y. Y., Liu, X. F., Liu, Y. C., et al., 2017. Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet. Gansu Geology, 26(4): 28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201704005.htm
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract).
      Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200604023.htm
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/J.JSEAES.2013.03.029
      Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7
      Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      陈华勇, 张世涛, 初高彬, 等, 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629-3643.
      侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815.
      黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
      黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196
      李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
      吕凤军, 郝跃生, 石静, 等, 2009. ASTER遥感数据蚀变遥感异常提取研究. 地球学报, 30(2): 271-276.
      孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1406.
      杨金中, 方洪宾, 张玉君, 等, 2003. 中国西部重要成矿带遥感找矿异常提取的方法研究. 国土资源遥感, 15(3): 50-53.
      赵亚云, 刘晓峰, 刘远超, 等, 2017. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析. 甘肃地质, 26(4): 28-36.
      郑有业, 次琼, 高顺宝, 等, 2021. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402.
      郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (555) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return