Citation: | Yuan Xiaofang, Li Linqian, Zhang Yanpeng, Deng Yamin, 2024. Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis. Earth Science, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121 |
Bethke, C. M., Sanford, R. A., Kirk, M. F., et al., 2011. The Thermodynamic Ladder in Geomicrobiology. American Journal of Science, 311(3): 183-210. https://doi.org/10.2475/03.2011.01
|
Brammer, H., Ravenscroft, P., 2009. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South⁃East Asia. Environment International, 35(3): 647-654. https://doi.org/10.1016/j.envint.2008.10.004
|
Chen, C., Yang, B. Y., Shen, Y., et al., 2021. Sulfate Addition and Rising Temperature Promote Arsenic Methylation and the Formation of Methylated Thioarsenates in Paddy Soils. Soil Biology and Biochemistry, 154: 108129. https://doi.org/10.1016/j.soilbio.2021.108129
|
Chen, Y. H., Yu, K. F., Zhou, Y. Q., et al., 2017. Characterizing Spatiotemporal Variations of Chromophoric Dissolved Organic Matter in Headwater Catchment of a Key Drinking Water Source in China. Environmental Science and Pollution Research International, 24(36): 27799-27812. https://doi.org/10.1007/s11356⁃017⁃0307⁃5
|
Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
|
Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
|
Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
|
Gan, S. C., Schmidt, F., Heuer, V. B., et al., 2020. Impacts of Redox Conditions on Dissolved Organic Matter (DOM) Quality in Marine Sediments off the River Rhône, Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 276: 151-169. https://doi.org/10.1016/j.gca.2020.02.001
|
Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
|
Huang, S. B., Wang, Y. X., Liu, C. R., et al., 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098 (in Chinese with English abstract).
|
Huang, S. B., Wang, Y. X., Ma, T., et al., 2015. Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio⁃Lacustrine Aquifer at Jianghan Plain, China by EEM⁃PARAFAC and Hydrochemical Analyses. Science of the Total Environment, 529: 131-139. https://doi.org/10.1016/j.scitotenv.2015.05.051
|
Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
|
Kocar, B. D., Borch, T., Fendorf, S., 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
|
Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon⁃ Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1/2/3): 181-198. https://doi.org/10.1016/S0009⁃2541(99)00086⁃8
|
Lambert, T., Bouillon, S., Darchambeau, F., et al., 2017. Effects of Human Land Use on the Terrestrial and Aquatic Sources of Fluvial Organic Matter in a Temperate River Basin (the Meuse River, Belgium). Biogeochemistry, 136(2): 191-211. https://doi.org/10.1007/s10533⁃017⁃0387⁃9
|
Lambert, T., Teodoru, C. R., Nyoni, F. C., et al., 2016. Along⁃Stream Transport and Transformation of Dissolved Organic Matter in a Large Tropical River. Biogeosciences, 13(9): 2727-2741. https://doi.org/10.5194/bg⁃13⁃2727⁃2016
|
Liang, S. K., Zhang, M. Z., Wang, X. K., et al., 2023. Seasonal Dynamics of Dissolved Organic Matter Bioavailability Coupling with Water Mass Circulation in the South Yellow Sea. Science of the Total Environment, 904: 166671. https://doi.org/10.1016/j.scitotenv.2023.166671
|
Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
|
Maguffin, S. C., Kirk, M. F., Daigle, A. R., et al., 2015. Substantial Contribution of Biomethylation to Aquifer Arsenic Cycling. Nature Geoscience, 8: 290-293. https://doi.org/10.1038/ngeo2383
|
Nowak, M. E., Schwab, V. F., Lazar, C. S., et al., 2017. Carbon Isotopes of Dissolved Inorganic Carbon Reflect Utilization of Different Carbon Sources by Microbial Communities in Two Limestone Aquifer Assemblages. Hydrology and Earth System Sciences, 21(9): 4283-4300. https://doi.org/10.5194/hess⁃21⁃4283⁃2017
|
Osburn, C. L., Anderson, N. J., Stedmon, C. A., et al., 2017. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes along a Regional Hydro⁃Climatic Gradient. Journal of Geophysical Research: Biogeosciences, 122(12): 3431-3445. https://doi.org/10.1002/2017jg003999
|
Sansonetti, J. E., 2007. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data, 36(2): 497-507. https://doi.org/10.1063/1.2719251
|
Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035
|
Song, X. W., Li, Y. Q., Stirling, E., et al., 2022. Asgene DB: A Curated Orthology Arsenic Metabolism Gene Database and Computational Tool for Metagenome Annotation. NAR Genomics and Bioinformatics, 4(4): lqac080. https://doi.org/10.1093/nargab/lqac080.
|
Stolz, J. F., Basu, P., Santini, J. M., et al., 2006. Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 60: 107-130. https://doi.org/10.1146/annurev.micro.60.080805.142053
|
Stuckey, J., Schaefer, M., Kocar, B., et al., 2016. Arsenic Release Metabolically Limited to Permanently Water⁃Saturated Soil in Mekong Delta. Nature Geoscience, 9: 70-76. https://doi.org/10.1038/ngeo2589
|
Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
|
Tao, D. Y., Shi, C. Z., Guo, W., et al., 2022. Determination of As Species Distribution and Variation with Time in Extracted Groundwater Samples by On⁃Site Species Separation Method. Science of the Total Environment, 808: 151913. https://doi.org/10.1016/j.scitotenv.2021.151913
|
Thomas, F., Diaz⁃Bone, R. A., Wuerfel, O., et al., 2011. Connection between Multimetal(Loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis. Applied and Environmental Microbiology, 77(24): 8669-8675. https://doi.org/10.1128/AEM.06406⁃11
|
Tian, T., Yan, M. M., Zeng, X. B., et al., 2020. Effect of Dissolved Organic Matter from Different Sources on Arsenic Methylation in Paddy Soils. Journal of Agro⁃ Environment Science, 39(3): 511-520 (in Chinese with English abstract).
|
Walker, S. A., Amon, R. M. W., Stedmon, C., et al., 2009. The Use of PARAFAC Modeling to Trace Terrestrial Dissolved Organic Matter and Fingerprint Water Masses in Coastal Canadian Arctic Surface Waters. Journal of Geophysical Research: Biogeosciences, 114(G4): G00F06. https://doi.org/10.1029/2009jg000990
|
Wang, P. P., Bao, P., Sun, G. X., 2015. Identification and Catalytic Residues of the Arsenite Methyltransferase from a Sulfate⁃Reducing Bacterium, Clostridium Sp. BXM. FEMS Microbiology Letters, 362(1): 1-8. https://doi.org/10.1093/femsle/fnu003
|
Wang, Y. H., Li, P., Jiang, Z., et al., 2018. Diversity and Abundance of Arsenic Methylating Microorganisms in High Arsenic Groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology, 27(8): 1047-1057. https://doi.org/10.1007/s10646⁃018⁃1958⁃9
|
Xu, Y. X., Liu, D., Yuan, X. F., et al., 2024. Deciphering the Spatial Heterogeneity of Groundwater Arsenic in Quaternary Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 929: 172405. https://doi.org/10.1016/j.scitotenv.2024.172405
|
Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
|
Yamashita, Y., Scinto, L. J., Maie, N., et al., 2010. Dissolved Organic Matter Characteristics across a Subtropical Wetland's Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 13(7): 1006-1019. https://doi.org/10.1007/s10021⁃010⁃9370⁃1
|
Yan, M. M., Zeng, X. B., Wang, J., et al., 2020. Dissolved Organic Matter Differentially Influences Arsenic Methylation and Volatilization in Paddy Soils. Journal of Hazardous Materials, 388: 121795. https://doi.org/10.1016/j.jhazmat.2019.121795
|
Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020a. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
|
Yang, Y. P., Tang, X. J., Zhang, H. M., et al., 2020b. The Characterization of Arsenic Biotransformation Microbes in Paddy Soil after Straw Biochar and Straw Amendments. Journal of Hazardous Materials, 391: 122200. https://doi.org/10.1016/j.jhazmat.2020.122200
|
Yuan, X. F., Deng, Y. M., Du, Y., et al., 2020. Characteristics of Stable Carbon Isotopes and Its Implications on Arsenic Enrichment in Shallow Groundwater of the Jianghan Plain. Bulletin of Geological Science and Technology, 39(5): 156-163 (in Chinese with English abstract).
|
Zhang, J. W., Ma, T., Yan, Y. N., et al., 2018. Effects of Fe⁃S⁃As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
|
Zhao, F. J., Harris, E., Yan, J., et al., 2013. Arsenic Methylation in Soils and Its Relationship with Microbial arsM Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 47(13): 7147-7154. https://doi.org/10.1021/es304977m
|
Zhu, Y. G., Yoshinaga, M., Zhao, F. J., et al., 2014. Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 42: 443-467. https://doi.org/10.1146/annurev⁃earth⁃060313⁃054942
|
黄爽兵, 王焰新, 刘昌蓉, 等, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
|
鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
|
田腾, 颜蒙蒙, 曾希柏, 等, 2020. 不同来源可溶性有机质对稻田土壤中砷甲基化的影响. 农业环境科学学报, 39(3): 511-520.
|
袁晓芳, 邓娅敏, 杜尧, 等, 2020. 江汉平原高砷地下水稳定碳同位素特征及其指示意义. 地质科技通报, 39(5): 156-163.
|