• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Yuan Xiaofang, Li Linqian, Zhang Yanpeng, Deng Yamin, 2024. Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis. Earth Science, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121
    Citation: Yuan Xiaofang, Li Linqian, Zhang Yanpeng, Deng Yamin, 2024. Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis. Earth Science, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121

    Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis

    doi: 10.3799/dqkx.2024.121
    • Received Date: 2024-10-29
    • Publish Date: 2024-11-25
    • Arsenic poisoning caused by high-arsenic groundwater represents a significant threat to human health. The arsenic methylation process, which converts highly toxic inorganic arsenic into less toxic methylated arsenic species, has the potential to mitigate the environmental risk of arsenic contamination and reduce its toxicity to humans. This process may provide an effective approach to managing arsenic pollution in groundwater. However, current research predominantly focuses on the migration of inorganic arsenic, with limited understanding of the key processes and controlling factors that govern the enrichment of methylated arsenic. In this study, it analyzed shallow groundwater from the Jianghan plain, located along the Yangtze and Han rivers, using inorganic carbon isotope tracing and EEMs of dissolved organic matter. The aim of this study is to elucidate the organic matter degradation pathways that regulate the enrichment of methylated arsenic and to identify the key biogeochemical processes involved. It found that methylated arsenic concentrations in the Jianghan plain ranged from < 0.01 to 444 μg/L, with an average concentration of 30 μg/L. The processes controlling methylated arsenic enrichment differed significantly between groundwater from the Yangtze River and the Han River. Along the Yangtze River, the degradation of high-molecular-weight aromatic organic compounds drives methanogenesis, which in turn promotes arsenic biomethylation and the subsequent enrichment of methylated arsenic in groundwater. Additionally, the sulfate reduction process, associated with the fermentation of organic matter, also supports arsenic biomethylation. In contrast, in the Han River region, the arsenic biomethylation process is primarily driven by the fermentation of small-molecule reactive organic matter.

       

    • loading
    • Bethke, C. M., Sanford, R. A., Kirk, M. F., et al., 2011. The Thermodynamic Ladder in Geomicrobiology. American Journal of Science, 311(3): 183-210. https://doi.org/10.2475/03.2011.01
      Brammer, H., Ravenscroft, P., 2009. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South⁃East Asia. Environment International, 35(3): 647-654. https://doi.org/10.1016/j.envint.2008.10.004
      Chen, C., Yang, B. Y., Shen, Y., et al., 2021. Sulfate Addition and Rising Temperature Promote Arsenic Methylation and the Formation of Methylated Thioarsenates in Paddy Soils. Soil Biology and Biochemistry, 154: 108129. https://doi.org/10.1016/j.soilbio.2021.108129
      Chen, Y. H., Yu, K. F., Zhou, Y. Q., et al., 2017. Characterizing Spatiotemporal Variations of Chromophoric Dissolved Organic Matter in Headwater Catchment of a Key Drinking Water Source in China. Environmental Science and Pollution Research International, 24(36): 27799-27812. https://doi.org/10.1007/s11356⁃017⁃0307⁃5
      Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
      Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Gan, S. C., Schmidt, F., Heuer, V. B., et al., 2020. Impacts of Redox Conditions on Dissolved Organic Matter (DOM) Quality in Marine Sediments off the River Rhône, Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 276: 151-169. https://doi.org/10.1016/j.gca.2020.02.001
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Huang, S. B., Wang, Y. X., Liu, C. R., et al., 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098 (in Chinese with English abstract).
      Huang, S. B., Wang, Y. X., Ma, T., et al., 2015. Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio⁃Lacustrine Aquifer at Jianghan Plain, China by EEM⁃PARAFAC and Hydrochemical Analyses. Science of the Total Environment, 529: 131-139. https://doi.org/10.1016/j.scitotenv.2015.05.051
      Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
      Kocar, B. D., Borch, T., Fendorf, S., 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
      Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon⁃ Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1/2/3): 181-198. https://doi.org/10.1016/S0009⁃2541(99)00086⁃8
      Lambert, T., Bouillon, S., Darchambeau, F., et al., 2017. Effects of Human Land Use on the Terrestrial and Aquatic Sources of Fluvial Organic Matter in a Temperate River Basin (the Meuse River, Belgium). Biogeochemistry, 136(2): 191-211. https://doi.org/10.1007/s10533⁃017⁃0387⁃9
      Lambert, T., Teodoru, C. R., Nyoni, F. C., et al., 2016. Along⁃Stream Transport and Transformation of Dissolved Organic Matter in a Large Tropical River. Biogeosciences, 13(9): 2727-2741. https://doi.org/10.5194/bg⁃13⁃2727⁃2016
      Liang, S. K., Zhang, M. Z., Wang, X. K., et al., 2023. Seasonal Dynamics of Dissolved Organic Matter Bioavailability Coupling with Water Mass Circulation in the South Yellow Sea. Science of the Total Environment, 904: 166671. https://doi.org/10.1016/j.scitotenv.2023.166671
      Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
      Maguffin, S. C., Kirk, M. F., Daigle, A. R., et al., 2015. Substantial Contribution of Biomethylation to Aquifer Arsenic Cycling. Nature Geoscience, 8: 290-293. https://doi.org/10.1038/ngeo2383
      Nowak, M. E., Schwab, V. F., Lazar, C. S., et al., 2017. Carbon Isotopes of Dissolved Inorganic Carbon Reflect Utilization of Different Carbon Sources by Microbial Communities in Two Limestone Aquifer Assemblages. Hydrology and Earth System Sciences, 21(9): 4283-4300. https://doi.org/10.5194/hess⁃21⁃4283⁃2017
      Osburn, C. L., Anderson, N. J., Stedmon, C. A., et al., 2017. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes along a Regional Hydro⁃Climatic Gradient. Journal of Geophysical Research: Biogeosciences, 122(12): 3431-3445. https://doi.org/10.1002/2017jg003999
      Sansonetti, J. E., 2007. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data, 36(2): 497-507. https://doi.org/10.1063/1.2719251
      Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035
      Song, X. W., Li, Y. Q., Stirling, E., et al., 2022. Asgene DB: A Curated Orthology Arsenic Metabolism Gene Database and Computational Tool for Metagenome Annotation. NAR Genomics and Bioinformatics, 4(4): lqac080. https://doi.org/10.1093/nargab/lqac080.
      Stolz, J. F., Basu, P., Santini, J. M., et al., 2006. Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 60: 107-130. https://doi.org/10.1146/annurev.micro.60.080805.142053
      Stuckey, J., Schaefer, M., Kocar, B., et al., 2016. Arsenic Release Metabolically Limited to Permanently Water⁃Saturated Soil in Mekong Delta. Nature Geoscience, 9: 70-76. https://doi.org/10.1038/ngeo2589
      Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
      Tao, D. Y., Shi, C. Z., Guo, W., et al., 2022. Determination of As Species Distribution and Variation with Time in Extracted Groundwater Samples by On⁃Site Species Separation Method. Science of the Total Environment, 808: 151913. https://doi.org/10.1016/j.scitotenv.2021.151913
      Thomas, F., Diaz⁃Bone, R. A., Wuerfel, O., et al., 2011. Connection between Multimetal(Loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis. Applied and Environmental Microbiology, 77(24): 8669-8675. https://doi.org/10.1128/AEM.06406⁃11
      Tian, T., Yan, M. M., Zeng, X. B., et al., 2020. Effect of Dissolved Organic Matter from Different Sources on Arsenic Methylation in Paddy Soils. Journal of Agro⁃ Environment Science, 39(3): 511-520 (in Chinese with English abstract).
      Walker, S. A., Amon, R. M. W., Stedmon, C., et al., 2009. The Use of PARAFAC Modeling to Trace Terrestrial Dissolved Organic Matter and Fingerprint Water Masses in Coastal Canadian Arctic Surface Waters. Journal of Geophysical Research: Biogeosciences, 114(G4): G00F06. https://doi.org/10.1029/2009jg000990
      Wang, P. P., Bao, P., Sun, G. X., 2015. Identification and Catalytic Residues of the Arsenite Methyltransferase from a Sulfate⁃Reducing Bacterium, Clostridium Sp. BXM. FEMS Microbiology Letters, 362(1): 1-8. https://doi.org/10.1093/femsle/fnu003
      Wang, Y. H., Li, P., Jiang, Z., et al., 2018. Diversity and Abundance of Arsenic Methylating Microorganisms in High Arsenic Groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology, 27(8): 1047-1057. https://doi.org/10.1007/s10646⁃018⁃1958⁃9
      Xu, Y. X., Liu, D., Yuan, X. F., et al., 2024. Deciphering the Spatial Heterogeneity of Groundwater Arsenic in Quaternary Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 929: 172405. https://doi.org/10.1016/j.scitotenv.2024.172405
      Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
      Yamashita, Y., Scinto, L. J., Maie, N., et al., 2010. Dissolved Organic Matter Characteristics across a Subtropical Wetland's Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 13(7): 1006-1019. https://doi.org/10.1007/s10021⁃010⁃9370⁃1
      Yan, M. M., Zeng, X. B., Wang, J., et al., 2020. Dissolved Organic Matter Differentially Influences Arsenic Methylation and Volatilization in Paddy Soils. Journal of Hazardous Materials, 388: 121795. https://doi.org/10.1016/j.jhazmat.2019.121795
      Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020a. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
      Yang, Y. P., Tang, X. J., Zhang, H. M., et al., 2020b. The Characterization of Arsenic Biotransformation Microbes in Paddy Soil after Straw Biochar and Straw Amendments. Journal of Hazardous Materials, 391: 122200. https://doi.org/10.1016/j.jhazmat.2020.122200
      Yuan, X. F., Deng, Y. M., Du, Y., et al., 2020. Characteristics of Stable Carbon Isotopes and Its Implications on Arsenic Enrichment in Shallow Groundwater of the Jianghan Plain. Bulletin of Geological Science and Technology, 39(5): 156-163 (in Chinese with English abstract).
      Zhang, J. W., Ma, T., Yan, Y. N., et al., 2018. Effects of Fe⁃S⁃As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
      Zhao, F. J., Harris, E., Yan, J., et al., 2013. Arsenic Methylation in Soils and Its Relationship with Microbial arsM Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 47(13): 7147-7154. https://doi.org/10.1021/es304977m
      Zhu, Y. G., Yoshinaga, M., Zhao, F. J., et al., 2014. Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 42: 443-467. https://doi.org/10.1146/annurev⁃earth⁃060313⁃054942
      黄爽兵, 王焰新, 刘昌蓉, 等, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      田腾, 颜蒙蒙, 曾希柏, 等, 2020. 不同来源可溶性有机质对稻田土壤中砷甲基化的影响. 农业环境科学学报, 39(3): 511-520.
      袁晓芳, 邓娅敏, 杜尧, 等, 2020. 江汉平原高砷地下水稳定碳同位素特征及其指示意义. 地质科技通报, 39(5): 156-163.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (367) PDF downloads(39) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return