Citation: | Zheng Haiping, Jiang Yuqi, Yu Wenming, Jing Guoqing, Xu Hongbo, Lyu Xiaohui, 2025. Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton. Earth Science, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127 |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
|
Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid-Ocean Ridge and Supra-Subduction Geochemical Signatures in Spinel-Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3-4): 691-708. https://doi.org/10.1016/j.lithos.2009.03.010
|
Belica, M. E., Piispa, E. J., Meert, J. G., et al., 2014. Paleoproterozoic Mafic Dyke Swarms from the Dharwar Craton: Paleomagnetic Poles for India from 2.37 to 1.88 Ga and Rethinking the Columbia Supercontinent. Precambrian Research, 244: 100-122. https://doi.org/10.1016/j.precamres.2013.12.005
|
Blichert-Toft, J., Albaréde, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
|
Campbell, I. H., Griffiths, R. W., 2014. Did the Formation of D″ Cause the Archaean-Proterozoic Transition? Earth and Planetary Science Letters, 388: 1-8.
|
Chen, B., Liu, S. W., Wang, R., et al., 2006. The Nd-Sr Isotopic Characteristics and Petrogenesis of Neoarchean-Proterozoic Granites in Lvliang-Wutai Block, North China Craton. Acta Geologica Sinica, 80(12): 1841 (in Chinese with English abstract).
|
Chifeng Geology and Mineral Exploration and Development Institute, Inner Mongolia, 2016. Report of the 1∶50 000 Regional Mineral Geological Survey of Xiaoniuqun Sheet and the Other Two Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 19-122 (in Chinese).
|
Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge.
|
Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
|
Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2022. A Reappraisal of the Global Tectono-Magmatic Lull at ∼2.3 Ga. Precambrian Research, 376: 106690. https://doi.org/10.1016/j.precamres.2022.106690
|
Cox, K. G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. https://doi.org/10.1093/petrology/21.4.629
|
Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076
|
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
|
Dong, C. Y., Ma, M. Z., Wilde, S. A., et al., 2022. The First Identification of Early Paleoproterozoic (2.46-2.38 Ga) Supracrustal Rocks in the Daqingshan Area, Northwestern North China Craton: Geology, Geochemistry and SHRIMP U-Pb Dating. Precambrian Research, 377: 106727.
|
Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean-Paleoproterozoic Multi-Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract).
|
Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040
|
Duan, Q. S., Du, L. L., Song, H. X., et al., 2021. Petrogenesis of the 2.3 Ga Lengkou Metavolcanic Rocks in the North China Craton: Implications for Tectonic Settings during the Magmatic Quiescence. Precambrian Research, 357: 106151. https://doi.org/10.1016/j.precamres.2021.106151
|
Faccenna, C., Becker, T. W., Lallemand, S., et al., 2010. Subduction-Triggered Magmatic Pulses: A New Class of Plumes? Earth and Planetary Science Letters, 299(1-2): 54-68.
|
Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt-New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004
|
Frey, F. A., Garcia, M. O., Wise, W. S., et al., 1991. The Evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of Tholeiitic and Alkalic Basalts. Journal of Geophysical Research: Solid Earth, 96(B9): 14347-14375. https://doi.org/10.1029/91JB00940
|
Gao, P., Santosh, M., Kwon, S., et al., 2021. Ocean Plate Stratigraphy of a Long-Lived Precambrian Subduction-Accretion System: The Wutai Complex, North China Craton. Precambrian Research, 363: 106334. https://doi.org/10.1016/j.precamres.2021.106334
|
Gao, Z., Zhang, H. F., Yang, H., et al., 2018. Back-Arc Basin Development: Constraints on Geochronology and Geochemistry of Arc-like and OIB-like Basalts in the Central Qilian Block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002
|
Grauch, R. I., 1989. Rare Earth Elements in Metamorphic Rocks. In: Lipin, B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, D. C., 147-167.
|
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
|
Hart, S. R., Staudigel, H., 1982. The Control of Alkalies and Uranium in Seawater by Ocean Crust Alteration. Earth and Planetary Science Letters, 58(2): 202-212. https://doi.org/10.1016/0012-821X(82)90194-7
|
Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. https://doi.org/10.1016/0024-4937(95)90011-X
|
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
|
Hoffmann, J. E., Wilson, A. H., 2017. The Origin of Highly Radiogenic Hf Isotope Compositions in 3.33 Ga Commondale Komatiite Lavas (South Africa). Chemical Geology, 455: 6-21. https://doi.org/10.1016/j.chemgeo.2016.10.010
|
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
|
Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025
|
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451
|
Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3
|
Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
|
Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028
|
Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162(1): 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
|
Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract).
|
Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).
|
Li, Z. X., Zhang, S. B., Zheng, Y. F., et al., 2024. Linking the Paleoproterozoic Tectono-Magmatic Lull to the Archean Supercratons: Geochemical Insights from Paleoproterozoic Rocks in the North China Craton. Precambrian Research, 404: 107326. https://doi.org/10.1016/j.precamres.2024.107326
|
Liu, S. W., Fu, J. H., Lu, Y. J., et al., 2019. Precambrian Hongqiyingzi Complex at the Northern Margin of the North China Craton: Its Zircon U-Pb-Hf Systematics, Geochemistry and Constraints on Crustal Evolution. Precambrian Research, 326: 58-83. https://doi.org/10.1016/j.precamres.2018.05.019
|
Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41-56. https://doi.org/10.1016/S0301-9268(02)00063-3
|
Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70.
|
Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites: A Potential Paired Arc-Back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736.
|
McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
|
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
|
Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249-281. https://doi.org/10.1086/628085
|
No. 208 Team of Nuclear Industry, 2015. Report of the 1∶ 50 000 Regional Mineral Geological Survey of Chaoyangdi Sheet and the Other Three Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 25-91 (in Chinese).
|
O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3-4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056
|
Ouzegane, K., Liégeois, J. P., Doukkari, S., et al., 2023. The Egéré Paleo-Mesoproterozoic Rifted Passive Margin of the LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria) Subducted and Exhumed during the Pan-African Orogeny: U-Pb Zircon Ages, P-T-t Paths, Geochemistry and Sr-Nd Isotopes. Earth-Science Reviews, 236: 104262. https://doi.org/10.1016/j.earscirev.2022.104262
|
Panda, A., Shankar, R., Sarma, D. S., et al., 2023. Precise Pb-Pb Baddeleyite Geochronology, Geochemistry, and Sr-Nd Isotopic Constraints on the 2.36 & 1.88 Ga Mafic Dykes from the Bastar Craton, India: Implications for Their Petrogenesis in Conjunction with the Dharwar Mafic Dykes. Precambrian Research, 393: 107090.
|
Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041
|
Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record. Gondwana Research, 26(3-4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001
|
Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021
|
Peng, P., Ernst, R. E., Hou, G. T., et al., 2016. Dyke Swarms: Keys to Paleogeographic Reconstructions. Science Bulletin, 61(21): 1669-1671. https://doi.org/10.1007/s11434-016-1184-x
|
Pearce, T. H., 1968. A Contribution to the Theory of Variation Diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157. https://doi.org/10.1007/BF00635485
|
Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2): 41-67. https://doi.org/10.1016/0040-1951(75)90010-4
|
Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 525-548.
|
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
|
Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101
|
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
|
Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, M. D., Fisher, R. C., Lee, S., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C., 63-86.
|
Pisarevsky, S. A., De Waele, B., Jones, S., et al., 2015. Paleomagnetism and U-Pb Age of the 2.4 Ga Erayinia Mafic Dykes in the South-Western Yilgarn, Western Australia: Paleogeographic and Geodynamic Implications. Precambrian Research, 259: 222-231.
|
Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218.
|
Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11-12): 1387-1399.
|
Rossel, P., Oliveros, V., Ducea, M. N., et al., 2013. The Early Andean Subduction System as an Analog to Island Arcs: Evidence from Across-Arc Geochemical Variations in Northern Chile. Lithos, 179: 211-230. https://doi.org/10.1016/j.lithos.2013.08.014
|
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
|
Russell, J. K., Nicholls, J., 1988. Analysis of Petrologic Hypotheses with Pearce Element Ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35. https://doi.org/10.1007/BF00399362
|
Rutherford, L., Barovich, K., Hand, M., et al., 2006. Continental ca 1.7-1.69 Ga Fe-Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction-Modified Lithospheric Mantle. Australian Journal of Earth Sciences, 53(3): 501-519.
|
Santosh, M., Hu, C. N., He, X. F., et al., 2017. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Research, 45: 1-42. https://doi.org/10.1016/j.gr.2016.12.009
|
Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
|
Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88.
|
Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
|
Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono-Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561-017-0051-y
|
Srivastava, R. K., 2010. Dyke Swarms: Keys for Geodynamic Interpretation. Proceedings of the Sixth International Dyke Conference. Springer, Berlin, 636. https://doi.org/10.1007/978-3-642-12496-9
|
Sun, G. Z., Liu, S. W., Lü, Y. J., et al., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the Formation and Evolution of the Northern North China Craton. Precambrian Research, 379: 106819. https://doi.org/10.1016/j.precamres.2022.106819
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345.
|
Sun, Z. J., Yu, H. N., Li, C., et al., 2017. Paleoproterozoic (ca. 1.7 Ga) Magmatism in Chifeng, Inner Mongolia: Implications for the Tectonic Evolution of the Trans-North China Orogen. Arabian Journal of Geosciences, 10(20): 453.
|
Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517-540. https://doi.org/10.1111/jmg.12243
|
Tang, L., Santosh, M., 2018. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751-768. https://doi.org/10.1016/j.gsf.2017.04.002
|
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262
|
Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222-223: 191-211. https://doi.org/10.1016/j.precamres.2011.09.008
|
Turner, S. P., 1996. Petrogenesis of the Late-Delamerian Gabbroic Complex at Black Hill, South Australia: Implications for Convective Thinning of the Lithospheric Mantle. Mineralogy and Petrology, 56(1): 51-89. https://doi.org/10.1007/BF01162657
|
Turner, S. J., Langmuir, C. H., Dungan, M. A., et al., 2017. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth and Planetary Science Letters, 472: 216-228. https://doi.org/10.1016/j.epsl.2017.04.051
|
Valley, J. W., Reinhard, D. A., Cavosie, A. J., et al., 2015. Nano- and Micro-Geochronology in Hadean and Archean Zircons by Atom-Probe Tomography and SIMS: New Tools for Old Mineralsâ. American Mineralogist, 100(7): 1355-1377. https://doi.org/10.2138/am-2015-5134
|
Verma, S. P., 1981. Seawater Alteration Effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in Oceanic Igneous Rocks. Chemical Geology, 34(1-2): 81-89. https://doi.org/10.1016/0009-2541(81)90073-5
|
Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U-Pb Geochronology of the Mts. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100-114. https://doi.org/10.1016/j.precamres.2014.02.004
|
Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/B35138.1
|
Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5-1-ECV5-21.
|
Wang, W., Liu, S. W., Santosh, M., et al., 2013a. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184-221. https://doi.org/10.1016/j.precamres.2012.09.019
|
Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
|
Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
|
Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
|
Wang, Z. H., Wilde, S. A., Wan, J. L., 2010. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans-North China Orogen: New Constraints from the Yanmenguan Mafic-Ultramafic Intrusion in the Hengshan-Wutai-Fuping Area. Precambrian Research, 178(1-4): 27-42.
|
Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008
|
Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. https://doi.org/10.1016/S1342-937X(05)70892-3
|
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. https://doi.org/10.1007/978-1-4020-6788-4
|
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
|
Winter, J. D., 2014. Principles of Igneous and Metamorphic Petrology (Second ed.). Cambridge University Press, Cambridge, 745.
|
Wu, C., Wang, G. S., Zhou, Z. G., et al., 2022. Late Archeanâ Paleoproterozoic Plate Tectonics along the Northern Margin of the North China Craton. GSA Bulletin, 135(3-4): 967-989. https://doi.org/10.1130/B36533.1
|
Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9 Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610-3646. https://doi.org/10.1029/2018TC005103
|
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
|
Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan-Type Ultramafic-Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037
|
Zeng, Y. C., Chen, Q., Xu, J. F., et al., 2018. Petrogenesis and Geodynamic Significance of Neoproterozoic (∼925 Ma) High-Fe-Ti Gabbros of the RenTso Ophiolite, Lhasa Terrane, Central Tibet. Precambrian Research, 314: 160-169. https://doi.org/10.1016/j.precamres.2018.06.005
|
Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x
|
Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1-4): 183-199. https://doi.org/10.1016/S0301-9268(02)00211-5
|
Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhai, M. G., Zhang, Y. B., Li, Q. L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1-23 (in Chinese with English abstract).
|
Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28-43. https://doi.org/10.1016/j.lithos.2012.10.018
|
Zhang, H., Hou, G. T., Tian, W., 2023. Baddeleyite Dating of a 2.34 Ga Mafic Dyke in the Western Shandong Province, North China Craton, and Its Tectonic Implications. Lithos, 438-439: 107013. https://doi.org/10.1016/j.lithos.2022.107013
|
Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
|
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
|
Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/S0016756807003834
|
Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017
|
Zhao, T. P., Chen, W., Zhou, M. F., 2009. Geochemical and Nd-Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex, North China Craton. Lithos, 113(3-4): 673-690.
|
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
|
Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low-δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361: 106258. https://doi.org/10.1016/j.precamres.2021.106258
|
Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume-Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism across North China Craton. Earth-Science Reviews, 230: 104060. https://doi.org/10.1016/j.earscirev.2022.104060
|
陈斌, 刘树文, 王蕊等, 2006. 华北克拉通吕梁‒五台地块新太古代‒古元古代花岗岩的Nd-Sr同位素地球化学及其成因意义. 地质学报, 80(12): 1841.
|
杜利林, 杨崇辉, 宋会侠, 等, 2020. 华北克拉通阜平杂岩新太古代‒古元古代多期地质事件及其构造性质. 地球科学, 45(9): 3179-3195. doi: 10.3799/dqkx.2020.240
|
核工业二〇八大队, 2015. 内蒙古自治区赤峰市《朝阳地等四幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 25-91.
|
侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
|
李江海, 钱祥麟, 黄雄南, 等, 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1-10.
|
李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合‒裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
|
内蒙古赤峰地质矿产勘查开发院, 2016. 内蒙古自治区赤峰市《小牛群等三幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 19-122.
|
汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
|
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
|
翟明国, 张艳斌, 李秋立, 等, 2021. 克拉通、下地壳与大陆岩石圈——庆贺沈其韩先生百年华诞. 岩石学报, 37(1): 1-23.
|