• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 7
    Jul.  2025
    Turn off MathJax
    Article Contents
    Zheng Haiping, Jiang Yuqi, Yu Wenming, Jing Guoqing, Xu Hongbo, Lyu Xiaohui, 2025. Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton. Earth Science, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127
    Citation: Zheng Haiping, Jiang Yuqi, Yu Wenming, Jing Guoqing, Xu Hongbo, Lyu Xiaohui, 2025. Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton. Earth Science, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127

    Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton

    doi: 10.3799/dqkx.2024.127
    • Received Date: 2024-09-23
      Available Online: 2025-07-29
    • Publish Date: 2025-07-25
    • The magmatic activities in the Early Paleoproterozoic are of great significance for understanding the tectonic evolution history and geodynamic processes of the Trans-North China Orogen (TNCO) in the North China Craton (NCC). In this study, the Early Paleoproterozoic diabase-gabbro was discovered for the first time in the Luobuqigou area of southern Chifeng at the northern end of the TNCO, and detailed petrography, whole rock geochemistry and zircon U-Pb-Hf isotope geochemistry studies were carried out. Zircon U-Pb isotopic dating reveals that the intrusion age of diabase-gabbro is 2 332 Ma. The geochemical characteristics indicate that the diabase-gabbro belongs to the tholeiitic basalt series. It shows positive anomalies of Rb, Ba, U and Pb, and negative anomalies of Sr, Nb, Th and Y. It has a relatively gentle right-dipping REE distribution pattern, with a weak enrichment of LREE relative to HREE, and the Eu anomaly is not obvious. Zircon εHf(t) value ranging from -4.4 to -0.8, and the single-stage Hf model age tDM1 range from 2 722 Ma to 2 873 Ma. Petrogenetic studies have shown that the diabase-gabbro magma originated from the enriched subcontinent lithosphere mantle with the participation of the asthenospheric mantle. The enriched mantle source is a 10% to 20% partially melted spinel- and garnet-bearing lherzolite mantle. Its magma evolution is dominated by the fractional crystallization of clinopyroxene, followed by olivine and plagioclase, and the influence of crustal contamination was limited. The comprehensive study shows that the ~2.33 Ga diabase-gabbro in the Luobuqigou area of southern Chifeng at the northern end of the TNCO during the Early Proterozoic tectono-magmatic lull (TML) period, might beformed in a back-arc extensional rift environment. The study area might have experienced the geodynamic process of asthenosphere upwelling and lithosphere thinning caused by plate rollback. Our research results provide constraints and references for the tectonic evolution of the northern end of the TNCO in the NCC during the Early Paleoproterozoic.

       

    • loading
    • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
      Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid-Ocean Ridge and Supra-Subduction Geochemical Signatures in Spinel-Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3-4): 691-708. https://doi.org/10.1016/j.lithos.2009.03.010
      Belica, M. E., Piispa, E. J., Meert, J. G., et al., 2014. Paleoproterozoic Mafic Dyke Swarms from the Dharwar Craton: Paleomagnetic Poles for India from 2.37 to 1.88 Ga and Rethinking the Columbia Supercontinent. Precambrian Research, 244: 100-122. https://doi.org/10.1016/j.precamres.2013.12.005
      Blichert-Toft, J., Albaréde, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
      Campbell, I. H., Griffiths, R. W., 2014. Did the Formation of D″ Cause the Archaean-Proterozoic Transition? Earth and Planetary Science Letters, 388: 1-8. https://doi.org/10.1016/j.epsl.2013.11.048
      Chen, B., Liu, S. W., Wang, R., et al., 2006. The Nd-Sr Isotopic Characteristics and Petrogenesis of Neoarchean-Proterozoic Granites in Lvliang-Wutai Block, North China Craton. Acta Geologica Sinica, 80(12): 1841 (in Chinese with English abstract).
      Chifeng Geology and Mineral Exploration and Development Institute, Inner Mongolia, 2016. Report of the 1∶50 000 Regional Mineral Geological Survey of Xiaoniuqun Sheet and the Other Two Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 19-122 (in Chinese).
      Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge.
      Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
      Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2022. A Reappraisal of the Global Tectono-Magmatic Lull at ∼2.3 Ga. Precambrian Research, 376: 106690. https://doi.org/10.1016/j.precamres.2022.106690
      Cox, K. G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. https://doi.org/10.1093/petrology/21.4.629
      Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076
      DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
      Dong, C. Y., Ma, M. Z., Wilde, S. A., et al., 2022. The First Identification of Early Paleoproterozoic (2.46-2.38 Ga) Supracrustal Rocks in the Daqingshan Area, Northwestern North China Craton: Geology, Geochemistry and SHRIMP U-Pb Dating. Precambrian Research, 377: 106727. https://doi.org/10.1016/j.precamres.2022.106727
      Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean-Paleoproterozoic Multi-Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract).
      Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040
      Duan, Q. S., Du, L. L., Song, H. X., et al., 2021. Petrogenesis of the 2.3 Ga Lengkou Metavolcanic Rocks in the North China Craton: Implications for Tectonic Settings during the Magmatic Quiescence. Precambrian Research, 357: 106151. https://doi.org/10.1016/j.precamres.2021.106151
      Faccenna, C., Becker, T. W., Lallemand, S., et al., 2010. Subduction-Triggered Magmatic Pulses: A New Class of Plumes? Earth and Planetary Science Letters, 299(1-2): 54-68. https://doi.org/10.1016/j.epsl.2010.08.012
      Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt-New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004
      Frey, F. A., Garcia, M. O., Wise, W. S., et al., 1991. The Evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of Tholeiitic and Alkalic Basalts. Journal of Geophysical Research: Solid Earth, 96(B9): 14347-14375. https://doi.org/10.1029/91JB00940
      Gao, P., Santosh, M., Kwon, S., et al., 2021. Ocean Plate Stratigraphy of a Long-Lived Precambrian Subduction-Accretion System: The Wutai Complex, North China Craton. Precambrian Research, 363: 106334. https://doi.org/10.1016/j.precamres.2021.106334
      Gao, Z., Zhang, H. F., Yang, H., et al., 2018. Back-Arc Basin Development: Constraints on Geochronology and Geochemistry of Arc-like and OIB-like Basalts in the Central Qilian Block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002
      Grauch, R. I., 1989. Rare Earth Elements in Metamorphic Rocks. In: Lipin, B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, D. C., 147-167.
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
      Hart, S. R., Staudigel, H., 1982. The Control of Alkalies and Uranium in Seawater by Ocean Crust Alteration. Earth and Planetary Science Letters, 58(2): 202-212. https://doi.org/10.1016/0012-821X(82)90194-7
      Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. https://doi.org/10.1016/0024-4937(95)90011-X
      Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      Hoffmann, J. E., Wilson, A. H., 2017. The Origin of Highly Radiogenic Hf Isotope Compositions in 3.33 Ga Commondale Komatiite Lavas (South Africa). Chemical Geology, 455: 6-21. https://doi.org/10.1016/j.chemgeo.2016.10.010
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025
      Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451
      Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3
      Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
      Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028
      Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162(1): 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
      Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract).
      Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).
      Li, Z. X., Zhang, S. B., Zheng, Y. F., et al., 2024. Linking the Paleoproterozoic Tectono-Magmatic Lull to the Archean Supercratons: Geochemical Insights from Paleoproterozoic Rocks in the North China Craton. Precambrian Research, 404: 107326. https://doi.org/10.1016/j.precamres.2024.107326
      Liu, S. W., Fu, J. H., Lu, Y. J., et al., 2019. Precambrian Hongqiyingzi Complex at the Northern Margin of the North China Craton: Its Zircon U-Pb-Hf Systematics, Geochemistry and Constraints on Crustal Evolution. Precambrian Research, 326: 58-83. https://doi.org/10.1016/j.precamres.2018.05.019
      Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41-56. https://doi.org/10.1016/S0301-9268(02)00063-3
      Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70.
      Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites: A Potential Paired Arc-Back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736. https://doi.org/10.1016/j.gca.2008.12.020
      McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249-281. https://doi.org/10.1086/628085
      No. 208 Team of Nuclear Industry, 2015. Report of the 1∶ 50 000 Regional Mineral Geological Survey of Chaoyangdi Sheet and the Other Three Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 25-91 (in Chinese).
      O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3-4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056
      Ouzegane, K., Liégeois, J. P., Doukkari, S., et al., 2023. The Egéré Paleo-Mesoproterozoic Rifted Passive Margin of the LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria) Subducted and Exhumed during the Pan-African Orogeny: U-Pb Zircon Ages, P-T-t Paths, Geochemistry and Sr-Nd Isotopes. Earth-Science Reviews, 236: 104262. https://doi.org/10.1016/j.earscirev.2022.104262
      Panda, A., Shankar, R., Sarma, D. S., et al., 2023. Precise Pb-Pb Baddeleyite Geochronology, Geochemistry, and Sr-Nd Isotopic Constraints on the 2.36 & 1.88 Ga Mafic Dykes from the Bastar Craton, India: Implications for Their Petrogenesis in Conjunction with the Dharwar Mafic Dykes. Precambrian Research, 393: 107090. https://doi.org/10.1016/j.precamres.2023.107090
      Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041
      Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record. Gondwana Research, 26(3-4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001
      Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021
      Peng, P., Ernst, R. E., Hou, G. T., et al., 2016. Dyke Swarms: Keys to Paleogeographic Reconstructions. Science Bulletin, 61(21): 1669-1671. https://doi.org/10.1007/s11434-016-1184-x
      Pearce, T. H., 1968. A Contribution to the Theory of Variation Diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157. https://doi.org/10.1007/BF00635485
      Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2): 41-67. https://doi.org/10.1016/0040-1951(75)90010-4
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 525-548.
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, M. D., Fisher, R. C., Lee, S., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C., 63-86. https://doi.org/10.1029/166gm06
      Pisarevsky, S. A., De Waele, B., Jones, S., et al., 2015. Paleomagnetism and U-Pb Age of the 2.4 Ga Erayinia Mafic Dykes in the South-Western Yilgarn, Western Australia: Paleogeographic and Geodynamic Implications. Precambrian Research, 259: 222-231. https://doi.org/10.1016/j.precamres.2014.05.023
      Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
      Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11-12): 1387-1399. https://doi.org/10.1130/b25724.1
      Rossel, P., Oliveros, V., Ducea, M. N., et al., 2013. The Early Andean Subduction System as an Analog to Island Arcs: Evidence from Across-Arc Geochemical Variations in Northern Chile. Lithos, 179: 211-230. https://doi.org/10.1016/j.lithos.2013.08.014
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
      Russell, J. K., Nicholls, J., 1988. Analysis of Petrologic Hypotheses with Pearce Element Ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35. https://doi.org/10.1007/BF00399362
      Rutherford, L., Barovich, K., Hand, M., et al., 2006. Continental ca 1.7-1.69 Ga Fe-Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction-Modified Lithospheric Mantle. Australian Journal of Earth Sciences, 53(3): 501-519. https://doi.org/10.1080/08120090600632466
      Santosh, M., Hu, C. N., He, X. F., et al., 2017. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Research, 45: 1-42. https://doi.org/10.1016/j.gr.2016.12.009
      Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
      Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397
      Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
      Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono-Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561-017-0051-y
      Srivastava, R. K., 2010. Dyke Swarms: Keys for Geodynamic Interpretation. Proceedings of the Sixth International Dyke Conference. Springer, Berlin, 636. https://doi.org/10.1007/978-3-642-12496-9
      Sun, G. Z., Liu, S. W., Lü, Y. J., et al., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the Formation and Evolution of the Northern North China Craton. Precambrian Research, 379: 106819. https://doi.org/10.1016/j.precamres.2022.106819
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, Z. J., Yu, H. N., Li, C., et al., 2017. Paleoproterozoic (ca. 1.7 Ga) Magmatism in Chifeng, Inner Mongolia: Implications for the Tectonic Evolution of the Trans-North China Orogen. Arabian Journal of Geosciences, 10(20): 453. https://doi.org/10.1007/s12517-017-3206-7
      Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517-540. https://doi.org/10.1111/jmg.12243
      Tang, L., Santosh, M., 2018. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751-768. https://doi.org/10.1016/j.gsf.2017.04.002
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262
      Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222-223: 191-211. https://doi.org/10.1016/j.precamres.2011.09.008
      Turner, S. P., 1996. Petrogenesis of the Late-Delamerian Gabbroic Complex at Black Hill, South Australia: Implications for Convective Thinning of the Lithospheric Mantle. Mineralogy and Petrology, 56(1): 51-89. https://doi.org/10.1007/BF01162657
      Turner, S. J., Langmuir, C. H., Dungan, M. A., et al., 2017. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth and Planetary Science Letters, 472: 216-228. https://doi.org/10.1016/j.epsl.2017.04.051
      Valley, J. W., Reinhard, D. A., Cavosie, A. J., et al., 2015. Nano- and Micro-Geochronology in Hadean and Archean Zircons by Atom-Probe Tomography and SIMS: New Tools for Old Mineralsâ. American Mineralogist, 100(7): 1355-1377. https://doi.org/10.2138/am-2015-5134
      Verma, S. P., 1981. Seawater Alteration Effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in Oceanic Igneous Rocks. Chemical Geology, 34(1-2): 81-89. https://doi.org/10.1016/0009-2541(81)90073-5
      Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U-Pb Geochronology of the Mts. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100-114. https://doi.org/10.1016/j.precamres.2014.02.004
      Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/B35138.1
      Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5-1-ECV5-21. https://doi.org/10.1029/2001JB000209
      Wang, W., Liu, S. W., Santosh, M., et al., 2013a. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184-221. https://doi.org/10.1016/j.precamres.2012.09.019
      Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
      Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wang, Z. H., Wilde, S. A., Wan, J. L., 2010. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans-North China Orogen: New Constraints from the Yanmenguan Mafic-Ultramafic Intrusion in the Hengshan-Wutai-Fuping Area. Precambrian Research, 178(1-4): 27-42. https://doi.org/10.1016/j.precamres.2010.01.005
      Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008
      Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. https://doi.org/10.1016/S1342-937X(05)70892-3
      Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. https://doi.org/10.1007/978-1-4020-6788-4
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Winter, J. D., 2014. Principles of Igneous and Metamorphic Petrology (Second ed.). Cambridge University Press, Cambridge, 745. https://doi.org/10.1017/CBO9780511813429
      Wu, C., Wang, G. S., Zhou, Z. G., et al., 2022. Late Archeanâ Paleoproterozoic Plate Tectonics along the Northern Margin of the North China Craton. GSA Bulletin, 135(3-4): 967-989. https://doi.org/10.1130/B36533.1
      Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9 Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610-3646. https://doi.org/10.1029/2018TC005103
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan-Type Ultramafic-Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037
      Zeng, Y. C., Chen, Q., Xu, J. F., et al., 2018. Petrogenesis and Geodynamic Significance of Neoproterozoic (∼925 Ma) High-Fe-Ti Gabbros of the RenTso Ophiolite, Lhasa Terrane, Central Tibet. Precambrian Research, 314: 160-169. https://doi.org/10.1016/j.precamres.2018.06.005
      Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x
      Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1-4): 183-199. https://doi.org/10.1016/S0301-9268(02)00211-5
      Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G., Zhang, Y. B., Li, Q. L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1-23 (in Chinese with English abstract).
      Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28-43. https://doi.org/10.1016/j.lithos.2012.10.018
      Zhang, H., Hou, G. T., Tian, W., 2023. Baddeleyite Dating of a 2.34 Ga Mafic Dyke in the Western Shandong Province, North China Craton, and Its Tectonic Implications. Lithos, 438-439: 107013. https://doi.org/10.1016/j.lithos.2022.107013
      Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/S0016756807003834
      Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017
      Zhao, T. P., Chen, W., Zhou, M. F., 2009. Geochemical and Nd-Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex, North China Craton. Lithos, 113(3-4): 673-690. https://doi.org/10.1016/j.lithos.2009.07.002
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low-δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361: 106258. https://doi.org/10.1016/j.precamres.2021.106258
      Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume-Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism across North China Craton. Earth-Science Reviews, 230: 104060. https://doi.org/10.1016/j.earscirev.2022.104060
      陈斌, 刘树文, 王蕊等, 2006. 华北克拉通吕梁‒五台地块新太古代‒古元古代花岗岩的Nd-Sr同位素地球化学及其成因意义. 地质学报, 80(12): 1841.
      杜利林, 杨崇辉, 宋会侠, 等, 2020. 华北克拉通阜平杂岩新太古代‒古元古代多期地质事件及其构造性质. 地球科学, 45(9): 3179-3195. doi: 10.3799/dqkx.2020.240
      核工业二〇八大队, 2015. 内蒙古自治区赤峰市《朝阳地等四幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 25-91.
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
      李江海, 钱祥麟, 黄雄南, 等, 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1-10.
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合‒裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
      内蒙古赤峰地质矿产勘查开发院, 2016. 内蒙古自治区赤峰市《小牛群等三幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 19-122.
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
      翟明国, 张艳斌, 李秋立, 等, 2021. 克拉通、下地壳与大陆岩石圈——庆贺沈其韩先生百年华诞. 岩石学报, 37(1): 1-23.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (90) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return