• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Liu Jianuo, Li Mingli, Jiang Yuanjun, Cheng Jianlong, He Jiamin, Song Hengpeng, Zheng Haijun, 2025. Microscopic Damage Evolution of Moraine Soils under Freeze-Thaw Cycles Based on PFC2D Simulation. Earth Science, 50(10): 4137-4154. doi: 10.3799/dqkx.2024.128
    Citation: Liu Jianuo, Li Mingli, Jiang Yuanjun, Cheng Jianlong, He Jiamin, Song Hengpeng, Zheng Haijun, 2025. Microscopic Damage Evolution of Moraine Soils under Freeze-Thaw Cycles Based on PFC2D Simulation. Earth Science, 50(10): 4137-4154. doi: 10.3799/dqkx.2024.128

    Microscopic Damage Evolution of Moraine Soils under Freeze-Thaw Cycles Based on PFC2D Simulation

    doi: 10.3799/dqkx.2024.128
    • Received Date: 2024-06-30
      Available Online: 2025-10-31
    • Publish Date: 2025-10-25
    • In order to investigate the microscopic damage mechanism of the degradation of the properties of freezing-thaw (F-T) damaged moraine soils, a method of simulating F-T damage of soils through water particle expansion is proposed based on the discrete element theory. Using the particle flow software PFC2D to simulate the triaxial compression test, combined with the comparative analysis of the test results, this method is accurate and reliable in modeling the changes in mechanical properties of moraine soils and reveals the evolution of microcrack; displacement field; force chain field and rupture characteristics of F-T moraine soils during the loading process. The results show follows (1) The microcracks in the F-T process show a trend of "cumulative evolution" that arises from the surrounding area and gradually expands to the middle, and the tensile microcracks are dominant; at 2-5 times of F-T processes, horizontal compression between particles dominated and a large number of tension microcracks inclined at 90° were developed. (2) The deterioration of moraine properties caused by F-T is particularly obvious in the early freeze-thaw period (2-5 times), the cohesion c decreases as a negative exponential function with the number of F-T cycles, while the internal friction angle φ shows a small fluctuation. (3) The specimen loaded process is dominated by shear cleavage, with the trend of "first slow, then steep, and finally slow" evolution, and the stress-strain curve is divided into four deformation stages according to the evolution characteristics. (4) When the sample is loaded after freeze-thaw, the transition point B of deceleration slope moves before the peak stress point C, indicating that point B can be used as a "precursor feature" in the process of microcrack expansion-through-formation failure; The specimen with 20 F-T cycles were more severely damaged when loaded and formed distinct shear zones.

       

    • loading
    • Chen, Z. M., Liu, Y. H., Li, N., 2024. Research on the Shear Characteristics of Moraine under Freeze-Thaw Action and the Surrounding Rock Pressure. Chinese Journal of Underground Space and Engineering, 20(2): 460-470 (in Chinese with English abstract).
      Deng, M. F., Chen, N. S., Liu, M., 2017. Meteorological Factors Driving Glacial till Variation and the Associated Periglacial Debris Flows in Tianmo Valley, South-Eastern Tibetan Plateau. Natural Hazards and Earth System Sciences, 17(3): 345-356. https://doi.org/10.5194/nhess-17-345-2017
      Feng, J. D., Li, J. G., Wang, R., et al., 2008. Large Scale Direct Shear Test on Strength Behavior of Railway Moraine Soils in Yunnan. Rock and Soil Mechanics, 29(12): 3205-3210 (in Chinese with English abstract).
      Han, M. X., Peng, W., Ma, B., et al., 2023. Micro-Composition Evolution of the Undisturbed Saline Soil Undergoing Different Freeze-Thaw Cycles. Cold Regions Science and Technology, 210: 103825. https://doi.org/10.1016/j.coldregions.2023.103825
      He, Y. H., Qu, Z. J., 1990. Mechanical Property and Microstructure Research of Glacial Till. Advanced Engineering Sciences, 22(5): 57-62 (in Chinese).
      Jiang, D. W., Cui, P., Wang, J., et al., 2019. Experimental Study on the Effect of Shear Strength of Moraine Soil with Fine Grain Content. Journal of Glaciology and Geocryology, 41(1): 129-139 (in Chinese with English abstract).
      Jiang, Q. Q., Xu, Y. Q., Wang, H., 2020. Research on Shear Deformation Characteristics of Soilrock Mixtures under Different Stone Contents. Journal of Engineering Geology, 28(5): 951-958 (in Chinese with English abstract).
      Jiang, T. T., Pan, H. L., Ai, Y. F., et al., 2024. Effect of Freeze-Thaw Cycles and Water Content on the Mechanical Properties of Moraine Soil. Bulletin of Geological Science and Technology, 43(2): 238-252 (in Chinese with English abstract).
      Konrad, J. M., 1989. Physical Processes during Freeze-Thaw Cycles in Clayey Silts. Cold Regions Science and Technology, 16(3): 291-303. https://doi.org/10.1016/0165-232X(89)90029-3
      Kuenza, K., Towhata, I., Orense, R. P., et al., 2004. Undrained Torsional Shear Tests on Gravelly Soils. Landslides, 1(3): 185-194. https://doi.org/10.1007/s10346-004-0023-3
      Leuther, F., Schlüter, S., 2021. Impact of Freeze-Thaw Cycles on Soil Structure and Soil Hydraulic Properties. SOIL, 7(1): 179-191. https://doi.org/10.5194/soil-7-179-2021
      Liu, J. J., Zha, F. S., Xu, L., et al., 2020. Strength and Microstructure Characteristics of Cement-Soda Residue Solidified/Stabilized Zinc Contaminated Soil Subjected to Freezing-Thawing Cycles. Cold Regions Science and Technology, 172: 102992. https://doi.org/10.1016/j.coldregions.2020.102992
      Liu, Y. H., Chen, Z. M., Guo, L. M., et al., 2023. Shear Characteristics of Frozen Moraine Soil under Freeze-Thaw Cycle. China Sciencepaper, 18(2): 166-171, 203 (in Chinese with English abstract).
      Lü, S. Z., Wang, R., Hu, M. J., et al., 2014. Computerized Tomography (CT) Scanning Test Research on Intact Moraine Soil on West Side of Yulong Snow Mountain. Rock and Soil Mechanics, 35(6): 1593-1599, 1622 (in Chinese with English abstract).
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract).
      Potyondy, D. O., Cundall, P. A., 2004. A Bonded-Particle Model for Rock. International Journal of Rock Mechanics and Mining Sciences, 41(8): 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
      Qiu, E. X., He, Q. L., Chen, Q. L., et al., 2023. Influence of Freeze-Thaw Cycles on Mechanical Properties of Moraine Soils. Transportation Geotechnics, 42: 101097. https://doi.org/10.1016/j.trgeo.2023.101097
      Qiu, E. X., Pan, H. Y., He, Q. L., et al., 2024. Tests on the Mechanical Properties of Moraine Soils under Freeze-Thaw Conditions and the Modified Duncan-Zhang Model. Journal of Engineering Geology, 32(3): 772-784 (in Chinese with English abstract).
      Qu, Z. J., Liu, K. M., Xiao, X. J., et al., 1992. Study of Microstructure, Stress-Strain Behavior and Constitutive Model of Till. Chinese Journal of Geotechnical Engineering, 14(6): 19-28 (in Chinese).
      Rossi, A. M., Kendrick, K. J., Graham, R. C., 2019. Pedogenic Evolution on the Arid Bishop Creek Moraines, Eastern Sierra Nevada, California. CATENA, 183: 104222. https://doi.org/10.1016/j.catena.2019.104222
      Song, Y. J., Sun, Y. W., Li, C. J., et al., 2023. Meso-Fracture Evolution Characteristics of Freeze-Thawed Sandstone Based on Discrete Element Method Simulation. Rock and Soil Mechanics, 44(12): 3602-3616 (in Chinese with English abstract).
      Sun, Y., Li, H., Chen, Z. F., et al., 2023. Numerical Simulation of Freeze-Thaw Damage of Root-Soil Composite Based on Discrete Element Method. Science Technology and Engineering, 23(16): 7025-7032 (in Chinese with English abstract).
      Tan, L., Wei, C. F., Tian, H. H., et al., 2015. Experimental Study of Unfrozen Water Content of Frozen Soils by Low-Field Nuclear Magnetic Resonance. Rock and Soil Mechanics, 36(6): 1566-1572 (in Chinese with English abstract).
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).
      Tao, Y., Yang, P., Li, L., et al., 2023. Characterizing Unfrozen Water Content of Saline Silty Clay during Freezing and Thawing Based on Superposition of Freezing Point Reduction. Cold Regions Science and Technology, 213: 103933. https://doi.org/10.1016/j.coldregions.2023.103933
      Veettil, B. K., Kamp, U., 2021. Glacial Lakes in the Andes under a Changing Climate: A Review. Journal of Earth Science, 32(6): 1575-1593. https://doi.org/10.1007/s12583-020-1118-z
      Wang, J. Q., Wang, Q., Kong, Y. Y., et al., 2020. Analysis of the Pore Structure Characteristics of Freeze-Thawed Saline Soil with Different Salinities Based on Mercury Intrusion Porosimetry. Environmental Earth Sciences, 79(7): 161. https://doi.org/10.1007/s12665-020-08903-w
      Wang, J. T., Zhou, W. J., Dong, G. C., et al., 2024. Repeated Glacial Fluctuations during the Last Glacial Maximum in the Southeastern Tibetan Plateau: 10Be Surface Exposure Dating of Moraines in the Lahaku Valley, Haizishan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 636: 111959. https://doi.org/10.1016/j.palaeo.2023.111959
      Wang, X. M., Yin, J., Luo, M. H., et al., 2023. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. Journal of Earth Science, 34(5): 1596-1615. https://doi.org/10.1007/s12583-021-1505-0
      Wu, L. Y., Zhu, Y. H., Bai, H. B., et al., 2023. Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone. Journal of Mining Science and Technology, 8(4): 487-501 (in Chinese with English abstract).
      Xiao, D. H., Feng, W. J., Zhang, Z., 2014. The Changing Rule of Loess' s Porosity under Freezing-Thawing Cycles. Journal of Glaciology and Geocryology, 36(4): 907-912 (in Chinese with English abstract).
      Xie, S. B., Qu, J. J., Lai, Y. M., et al., 2015. Effects of Freeze-Thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai-Tibet Plateau. Journal of Mountain Science, 12(4): 999-1009. https://doi.org/10.1007/s11629-014-3384-7
      Xu, A. H., Yan, Y. H., Chang, D., et al., 2025. Study on Macroscopic and Microscopic Mechanical Properties of Frozen Clay. Journal of Glaciology and Geocryology, 47(2): 372-381 (in Chinese with English abstract).
      Xu, W. J., Wang, S., 2016. Meso-Mechanics of Soil-Rock Mixture with Real Shape of Rock Blocks Based on 3D Numerical Direct Shear Test. Chinese Journal of Rock Mechanics and Engineering, 35(10): 2152-2160 (in Chinese with English abstract).
      Zhang, Y. S., Guo, C. B., Shi, J. S., et al., 2007. Research on the Engineering Geological Properties of Moraine/Outwash Rocks on the West Side of the Yulong Mountains. Geoscience, 21(1): 150-156 (in Chinese with English abstract).
      Zhou, G. G. D., Chen, L. L., Mu, Q. Y., et al., 2019. Effects of Water Content on the Shear Behavior and Critical State of Glacial Till in Tianmo Gully of Tibet, China. Journal of Mountain Science, 16(8): 1743-1759. https://doi.org/10.1007/s11629-019-5440-9
      Zhou, X. Q., Xu, W. Y., Niu, X. Q., et al., 2007. A Review of Distinct Element Method Researching Progress and Application. Rock and Soil Mechanics, 28(S1): 408-416 (in Chinese with English abstract).
      Zhu, T. T., Chen, J. X., Huang, D., et al., 2021. A DEM-Based Approach for Modeling the Damage of Rock under Freeze-Thaw Cycles. Rock Mechanics and Rock Engineering, 54(6): 2843-2858. https://doi.org/10.1007/s00603-021-02465-4
      陈志敏, 刘耀辉, 李宁, 2024. 冻融作用下冰碛体剪切特性与围岩压力研究. 地下空间与工程学报, 20(2): 460-470.
      冯俊德, 李建国, 汪稔, 等, 2008. 云南某铁路冰碛土大型直剪强度特性试验研究. 岩土力学, 29(12): 3205-3210.
      何迎红, 屈智炯, 1990. 冰碛土力学性质与微观结构的研究. 成都科技大学学报, 22(5): 57-62.
      蒋德旺, 崔鹏, 王姣, 等, 2019. 细粒含量对冰碛土抗剪强度影响的实验研究. 冰川冻土, 41(1): 129-139.
      江强强, 徐杨青, 王浩, 2020. 不同含石量条件下土石混合体剪切变形特征的试验研究. 工程地质学报, 28(5): 951-958.
      蒋婷婷, 潘华利, 艾一帆, 等, 2024. 冻融循环及含水率对冰碛土力学特性影响. 地质科技通报, 43(2): 238-252.
      刘耀辉, 陈志敏, 郭利民, 等, 2023. 冻融循环作用下冻结冰碛土剪切特性. 中国科技论文, 18(2): 166-171, 203.
      吕士展, 汪稔, 胡明鉴, 等, 2014. 玉龙雪山西麓原状冰碛土CT扫描试验研究. 岩土力学, 35(6): 1593-1599, 1622.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114.
      邱恩喜, 潘宏宇, 何巧玲, 等, 2024. 冻融条件下冰碛土力学特性试验及模型研究. 工程地质学报, 32(3): 772-784.
      屈智炯, 刘开明, 肖晓军, 等, 1992. 冰碛土微观结构、应力应变特性及其模型研究. 岩土工程学报, 14(6): 19-28.
      宋勇军, 孙银伟, 李晨婧, 等, 2023. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究. 岩土力学, 44(12): 3602-3616.
      孙渊, 李辉, 陈智峰, 等, 2023. 基于离散元方法的根土复合体冻融损伤数值模拟研究. 科学技术与工程, 23(16): 7025-7032.
      谭龙, 韦昌富, 田慧会, 等, 2015. 冻土未冻水含量的低场核磁共振试验研究. 岩土力学, 36(6): 1566-1572.
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931.
      吴禄源, 朱永恒, 白海波, 等, 2023. 砂岩颗粒流平行黏结模型宏细观参数关联性研究. 矿业科学学报, 8(4): 487-501.
      肖东辉, 冯文杰, 张泽, 2014. 冻融循环作用下黄土孔隙率变化规律. 冰川冻土, 36(4): 907-912.
      徐安花, 闫一辉, 常丹, 等, 2025. 冻结黏土宏细观力学特性研究. 冰川冻土, 47(2): 372-381.
      徐文杰, 王识, 2016. 基于真实块石形态的土石混合体细观力学三维数值直剪试验研究. 岩石力学与工程学报, 35(10): 2152-2160.
      张永双, 郭长宝, 石菊松, 等, 2007. 玉龙雪山西麓冰碛(水)砾岩的工程地质特性研究. 现代地质, 21(1): 150-156.
      周先齐, 徐卫亚, 钮新强, 等, 2007. 离散单元法研究进展及应用综述. 岩土力学, 28(增刊1): 408-416.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(5)

      Article views (12) PDF downloads(1) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return