Citation: | Zhu Ziguang, Hou Jiakai, Zhu Guangyou, Li Xi, Li Mengqi, 2025. Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments. Earth Science, 50(3): 1250-1262. doi: 10.3799/dqkx.2024.129 |
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651
|
Andersen, M. B., Erel, Y., Bourdon, B., 2009. Experimental Evidence for 234U-238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 73(14): 4124-4141. https://doi.org/10.1016/j.gca.2009.04.020
|
Andersen, M. B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051
|
Andersen, M. B., Stirling, C. H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19
|
Andersen, M. B., Vance, D., Morford, J. L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041
|
Bachmaf, S., Merkel, B. J., 2011. Sorption of Uranium(Ⅵ) at the Clay Mineral-Water Interface. Environmental Earth Sciences, 63(5): 925-934. https://doi.org/10.1007/s12665-010-0761-6
|
Bargar, J. R., Reitmeyer, R., Lenhart, J. J., et al., 2000. Characterization of U(Ⅵ)-Carbonato Ternary Complexes on Hematite: EXAFS and Electrophoretic Mobility Measurements. Geochimica et Cosmochimica Acta, 64(16): 2737-2749. https://doi.org/10.1016/S0016-7037(00)00398-7
|
Bargar, J. R., Williams, K. H., Campbell, K. M., et al., 2013. Uranium Redox Transition Pathways in Acetate-Amended Sediments. Proceedings of the National Academy of Sciences, 110(12): 4506-4511. https://doi.org/10.1073/pnas.1219198110
|
Basu, A., Sanford, R. A., Johnson, T. M., et al., 2014. Uranium Isotopic Fractionation Factors during U(Ⅵ) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100-113. https://doi.org/10.1016/j.gca.2014.02.041
|
Brennecka, G. A., Borg, L. E., Hutcheon, I. D., et al., 2010. Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the 238U/235U Fractionation Mechanism. Earth and Planetary Science Letters, 291(1-4): 228-233. https://doi.org/10.1016/j.epsl.2010.01.023
|
Brennecka, G. A., Wasylenki, L. E., Bargar, J. R., et al., 2011. Uranium Isotope Fractionation during Adsorption to Mn-Oxyhydroxides. Environmental Science & Technology, 45(4): 1370-1375. https://doi.org/10.1021/es103061v
|
Brown, A. R., Molinas, M., Roebbert, Y., et al., 2023. Electron Flux Is a Key Determinant of Uranium Isotope Fractionation during Bacterial Reduction. Communications Earth & Environment, 4: 329. https://doi.org/10.1038/s43247-023-00989-x
|
Brown, S. T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115
|
Chakraborty, S., Favre, F., Banerjee, D., et al., 2010. U(Ⅵ) Sorption and Reduction by Fe(Ⅱ) Sorbed on Montmorillonite. Environmental Science & Technology, 44(10): 3779-3785. https://doi.org/10.1021/es903493n
|
Chen, X. M., Robinson, S. A., Romaniello, S. J., et al., 2022. 238U/235U in Calcite Is More Susceptible to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 326: 273-287. https://doi.org/10.1016/j.gca.2022.03.027
|
Chen, X. M., Romaniello, S. J., Anbar, A. D., 2017. Uranium Isotope Fractionation Induced by Aqueous Speciation: Implications for U Isotopes in Marine CaCO3 as a Paleoredox Proxy. Geochimica et Cosmochimica Acta, 215: 162-172. https://doi.org/10.1016/j.gca.2017.08.006
|
Chen, X. M., Romaniello, S. J., Herrmann, A. D., et al., 2016. Uranium Isotope Fractionation during Coprecipitation with Aragonite and Calcite. Geochimica et Cosmochimica Acta, 188: 189-207. https://doi.org/10.1016/j.gca.2016.05.022
|
Chen, X., Tissot, F. L. H., Jansen, M. F., et al., 2021. The Uranium Isotopic Record of Shales and Carbonates through Geologic Time. Geochimica et Cosmochimica Acta, 300: 164-191. https://doi.org/10.1016/j.gca.2021.01.040
|
Chen, X., Zheng, W., Anbar, A. D., 2020. Uranium Isotope Fractionation (238U/235U) during U(Ⅵ) Uptake by Freshwater Plankton. Environmental Science & Technology, 54(5): 2744-2752. https://doi.org/10.1021/acs.est.9b06421
|
Cheng, H., Lawrence Edwards, R., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half-Life Values, and U-Th Isotopic Measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82-91. https://doi.org/10.1016/j.epsl.2013.04.006
|
Cole, D. B., Zhang, S., Planavsky, N. J., 2017. A New Estimate of Detrital Redox-Sensitive Metal Concentrations and Variability in Fluxes to Marine Sediments. Geochimica et Cosmochimica Acta, 215: 337-353. https://doi.org/10.1016/j.gca.2017.08.004
|
Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010
|
Dahl, T. W., Connelly, J. N., Li, D., et al., 2019. Atmosphere-Ocean Oxygen and Productivity Dynamics during Early Animal Radiations. Proceedings of the National Academy of Sciences, 116(39): 19352-19361. https://doi.org/10.1073/pnas.1901178116
|
Dang, D. H., Novotnik, B., Wang, W., et al., 2016. Uranium Isotope Fractionation during Adsorption, (Co) Precipitation, and Biotic Reduction. Environmental Science & Technology, 50(23): 12695-12704. https://doi.org/10.1021/acs.est.6b01459
|
Dang, D. H., Wang, W., Gibson, T. M., et al., 2022. Authigenic Uranium Isotopes of Late Proterozoic Black Shale. Chemical Geology, 588: 120644. https://doi.org/10.1016/j.chemgeo.2021.120644
|
Dong, W., Brooks, S. C., 2006. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environmental Science & Technology, 40(15): 4689-4695. https://doi.org/10.1021/es0606327
|
Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/S0009-2541(02)00110-9
|
Endrizzi, F., Leggett, C. J., Rao, L. F., 2016. Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions. Industrial & Engineering Chemistry Research, 55(15): 4249-4256. https://doi.org/10.1021/acs.iecr.5b03679
|
Endrizzi, F., Rao, L., 2014. Chemical Speciation of Uranium(Ⅵ) in Marine Environments: Complexation of Calcium and Magnesium Ions with [(UO2)(CO3)3]4- and the Effect on the Extraction of Uranium from Seawater. Chemistry A European Journal, 20(44): 14499-14506. https://doi.org/10.1002/chem.201403262
|
Ferronsky, V. I., Polyakov, V. A., 2012. Production and Distribution of Radiogenic Isotopes. In: Ferronsky, V. I., Polyakov, V. A., eds., Isotopes of the Earth's Hydrosphere. Springer, Dordrecht, 377-405.
|
Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
|
Goto, K. T., Anbar, A. D., Gordon, G. W., et al., 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta, 146: 43-58. https://doi.org/10.1016/j.gca.2014.10.003
|
Herrmann, A. D., Gordon, G. W., Anbar, A. D., 2018. Uranium Isotope Variations in a Dolomitized Jurassic Carbonate Platform (Tithonian; Franconian Alb, Southern Germany). Chemical Geology, 497: 41-53. https://doi.org/10.1016/j.chemgeo.2018.08.017
|
Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012
|
Hood, A. V. S., Planavsky, N. J., Wallace, M. W., et al., 2016. Integrated Geochemical-Petrographic Insights from Component-Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1
|
Hu, D. P., Li, D. D., Zhou, L., et al., 2023. Diagenetic Effects on Strontium Isotope (87Sr/86Sr) and Elemental (Sr, Mn, and Fe) Signatures of Late Ordovician Carbonates. JUSTC, 53(5): 503. https://doi.org/10.52396/justc-2022-0160
|
Hua, B., Deng, B. L., 2008. Reductive Immobilization of Uranium(Ⅵ) by Amorphous Iron Sulfide. Environmental Science & Technology, 42(23): 8703-8708. https://doi.org/10.1021/es801225z
|
Jemison, N. E., Johnson, T. M., Shiel, A. E., et al., 2016. Uranium Isotopic Fractionation Induced by U(Ⅵ) Adsorption Onto Common Aquifer Minerals. Environmental Science & Technology, 50(22): 12232-12240. https://doi.org/10.1021/acs.est.6b03488
|
Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re-Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013
|
Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025
|
Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016-7037(78)90001-7
|
Liger, E., Charlet, L., Van Cappellen, P., 1999. Surface Catalysis of Uranium(Ⅵ) Reduction by Iron(Ⅱ). Geochimica et Cosmochimica Acta, 63(19/20): 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
|
Lowenstein, T. K., Kendall, B., Anbar, A. D., 2014. The Geologic History of Seawater. In: Holland H. D., Turekian K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 569-622.
|
Min, S. Y., Qiu, C., Luan, X. C., et al., 2023. Evolution of Oceanic Redox State during Early Ordovician Tremadocian Age Traced by Uranium Isotopes. Geological Journal of China Universities, 29(2): 147-160 (in Chinese with English abstract).
|
Morse, J. W., Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Elsevier, New York.
|
Newsome, L., Morris, K., Lloyd, J. R., 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chemical Geology, 363: 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034
|
Owens, S. A., Buesseler, K. O., Sims, K. W. W., 2011. Re-Evaluating the 238U-Salinity Relationship in Seawater: Implications for the 238U-234Th Disequilibrium Method. Marine Chemistry, 127(1-4): 31-39. https://doi.org/10.1016/j.marchem.2011.07.005
|
Plette, A. C. C., Benedetti, M. F., van Riemsdijk, W. H., 1996. Competitive Binding of Protons, Calcium, Cadmium, and Zinc to Isolated Cell Walls of a Gram-Positive Soil Bacterium. Environmental Science & Technology, 30(6): 1902-1910. https://doi.org/10.1021/es950568l
|
Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time-Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth-Science Reviews, 87(3-4): 113-133. https://doi.org/10.1016/j.earscirev.2007.12.003
|
Qiu, C., Wei, G. Y., Min, S. Y., et al., 2022. Marine Redox Fluctuation during the Early Cambrian Age 10: Evidence from U Isotopes. Geological Journal of China Universities, 28(1): 40-50 (in Chinese with English abstract).
|
Rademacher, L. K., Lundstrom, C. C., Johnson, T. M., et al., 2006. Experimentally Determined Uranium Isotope Fractionation during Reduction of Hexavalent U by Bacteria and Zero Valent Iron. Environmental Science & Technology, 40(22): 6943-6948. https://doi.org/10.1021/es0604360
|
Reeder, R. J., Nugent, M., Lamble, G. M., et al., 2000. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environmental Science and Technology, 34(4): 638-644. https://doi.org/10.1021/es990981j
|
Reeder, R. J., Nugent, M., Tait, C. D., et al., 2001. Coprecipitation of Uranium(Ⅵ) with Calcite: XAFS, Micro-XAS, and Luminescence Characterization. Geochimica et Cosmochimica Acta, 65(20): 3491-3503. https://doi.org/10.1016/S0016-7037(01)00647-0
|
Renock, D., Mueller, M., Yuan, K., et al., 2013. The Energetics and Kinetics of Uranyl Reduction on Pyrite, Hematite, and Magnetite Surfaces: A Powder Microelectrode Study. Geochimica et Cosmochimica Acta, 118: 56-71. https://doi.org/10.1016/j.gca.2013.04.019
|
Rolison, J. M., Stirling, C. H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo-Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014
|
Romaniello, S. J., Herrmann, A. D., Anbar, A. D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002
|
Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452: 456-459. https://doi.org/10.1038/nature06811
|
Shi, L., Dong, H. L., Reguera, G., et al., 2016. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nature Reviews Microbiology, 14: 651-662. https://doi.org/10.1038/nrmicro.2016.93
|
Singer, D. M., Chatman, S. M., Ilton, E. S., et al., 2012. U(Ⅵ) Sorption and Reduction Kinetics on the Magnetite (111) Surface. Environmental Science & Technology, 46(7): 3821-3830. https://doi.org/10.1021/es203878c
|
Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al., 2011. Heterogeneous Reduction of U6+ by Structural Fe2+ from Theory and Experiment. Geochimica et Cosmochimica Acta, 75(22): 7277-7290. https://doi.org/10.1016/j.gca.2011.08.006
|
Stirling, C. H., Andersen, M. B., Potter, E. K., et al., 2007. Low-Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1-2): 208-225. https://doi.org/10.1016/j.epsl.2007.09.019
|
Stylo, M., Neubert, N., Wang, Y., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112
|
Suzuki, Y., Kelly, S. D., Kemner, K. M., et al., 2005. Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near-Surface Sediment. Applied and Environmental Microbiology, 71(4): 1790-1797. https://doi.org/10.1128/aem.71.4.1790-1797.2005
|
Tissot, F. L. H., Chen, C., Go, B. M., et al., 2018. Controls of Eustasy and Diagenesis on the 238U/235U of Carbonates and Evolution of the Seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta, 242: 233-265. https://doi.org/10.1016/j.gca.2018.08.022
|
Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034
|
Tokumaru, A., Nozaki, T., Suzuki, K., et al., 2015. Re-Os Isotope Geochemistry in the Surface Layers of Ferromanganese Crusts from the Takuyo Daigo Seamount, Northwestern Pacific Ocean. Geochemical Journal, 49(3): 233-241. https://doi.org/10.2343/geochemj.2.0352
|
Tunusoğlu, Ö., 2007. Kinetic Morphological, and Compositional Characterization of the Uptake of Aqueous Ba2+, Mn2+, and Cd2+ Ions by Calcite and Aragonite over a Wide Range of Concentration. Izmir Institute of Technology, Izmir.
|
Ulrich, K. U., Veeramani, H., Bernier-Latmani, R., et al., 2011. Speciation-Dependent Kinetics of Uranium(Ⅵ) Bioreduction. Geomicrobiology Journal, 28(5-6): 396-409. https://doi.org/10.1080/01490451.2010.507640
|
Veeramani, H., Alessi, D. S., Suvorova, E. I., et al., 2011. Products of Abiotic U(Ⅵ) Reduction by Biogenic Magnetite and Vivianite. Geochimica et Cosmochimica Acta, 75(9): 2512-2528. https://doi.org/10.1016/j.gca.2011.02.024
|
Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
|
Vollstaedt, H., Eisenhauer, A., Wallmann, K., et al., 2014. The Phanerozoic δ88/86Sr Record of Seawater: New Constraints on Past Changes in Oceanic Carbonate Fluxes. Geochimica et Cosmochimica Acta, 128: 249-265. https://doi.org/10.1016/j.gca.2013.10.006
|
Waite, T. D., Davis, J. A., Payne, T. E., et al., 1994. Uranium(Ⅵ) Adsorption to Ferrihydrite: Application of a Surface Complexation Model. Geochimica et Cosmochimica Acta, 58(24): 5465-5478. https://doi.org/10.1016/0016-7037(94)90243-7
|
Wall, J. D., Krumholz, L. R., 2006. Uranium Reduction. Annual Review of Microbiology, 60: 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357
|
Wang, X. L., Johnson, T. M., Lundstrom, C. C., 2015. Isotope Fractionation during Oxidation of Tetravalent Uranium by Dissolved Oxygen. Geochimica et Cosmochimica Acta, 150: 160-170. https://doi.org/10.1016/j.gca.2014.12.007
|
Wang, X. L., Ossa, F. O., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583
|
Wang, X., Planavsky, N. J., Reinhard, C. T., et al., 2016. A Cenozoic Seawater Redox Record Derived from 238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02
|
Wei, W., Frei, R., Klaebe, R., et al., 2021. A Transient Swing to Higher Oxygen Levels in the Atmosphere and Oceans at ~1.4 Ga. Precambrian Research, 354: 106058. https://doi.org/10.1016/j.precamres.2020.106058
|
Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345-359. https://doi.org/10.1016/j.gca.2007.11.012
|
Xu, G. P., Hannah, J. L., Bingen, B., et al., 2012. Digestion Methods for Trace Element Measurements in Shales: Paleoredox Proxies Examined. Chemical Geology, 324: 132-147. https://doi.org/10.1016/j.chemgeo.2012.01.029
|
Yang, S., Kendall, B., Lu, X. Z., et al., 2017. Uranium Isotope Compositions of Mid-Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post-Depositional Hydrothermal Fluid Flow. Precambrian Research, 298: 187-201. https://doi.org/10.1016/j.precamres.2017.06.016
|
Zhang, F. F., Lenton, T. M., Rey, Á. D., et al., 2020. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011
|
闵思雨, 邱晨, 栾晓聪, 等, 2023. 铀同位素示踪早奥陶世特马豆克期海洋氧化还原状态演化. 高校地质学报, 29(2): 147-160.
|
邱晨, 魏广祎, 闵思雨, 等, 2022. 寒武纪第十期早期海洋氧化还原波动: 来自U同位素的证据. 高校地质学报, 28(1): 40-50.
|