• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 7
    Jul.  2025
    Turn off MathJax
    Article Contents
    Shi Xueming, He Jiale, Zhang Kai, Wang Fei, Zhang Yaxing, Tian Shan, Yao Hongxi, Jiang Daojun, Zheng Hong, 2025. Karst Feature-Level Data Fusion of Comprehensive Exploration Data Using Improved DS Evidence Theory Algorithm. Earth Science, 50(7): 2912-2924. doi: 10.3799/dqkx.2024.150
    Citation: Shi Xueming, He Jiale, Zhang Kai, Wang Fei, Zhang Yaxing, Tian Shan, Yao Hongxi, Jiang Daojun, Zheng Hong, 2025. Karst Feature-Level Data Fusion of Comprehensive Exploration Data Using Improved DS Evidence Theory Algorithm. Earth Science, 50(7): 2912-2924. doi: 10.3799/dqkx.2024.150

    Karst Feature-Level Data Fusion of Comprehensive Exploration Data Using Improved DS Evidence Theory Algorithm

    doi: 10.3799/dqkx.2024.150
    • Received Date: 2024-11-04
    • Publish Date: 2025-07-25
    • Underground Karst formations pose significant safety risks to the design, construction, and safe operation of land transportation projects. To investigate the development of underground karst, comprehensive multi-source heterogeneous survey data were utilized, including remote sensing interpretation, engineering geological mapping, drill hole data, and the results from electrical resistivity tomography and transient electromagnetic methods. These data were unified in terms of temporal and spatial coordinates and standards to achieve data-level fusion of adverse karst geological bodies. Based on this foundation, a recognition framework for underground karst geological bodies was established. A method for assigning initial basic probability assignment (BPA) functions to underground spatial point domain was developed, and a modified Dempster-Shafer (DS) evidence theory algorithm based on Kendall's correlation coefficient was employed for multi-source data fusion to obtain karst evaluation indices. After 3D spatial interpolation, 3D imaging of karst features was plotted. The results indicate that the improved DS algorithm effectively solves the conflicts among comprehensive survey evidence, enabling intelligent decision-making regarding karst targets. The improved DS algorithm facilitated the integration of karst geological information features from comprehensive survey results. The 3D imaging of the integrated results enhanced the reliability and accuracy of underground karst geological body investigations, increasing work efficiency by 30% or more, and providing methodological guidance and evaluation tools for engineering design, construction, and operation.

       

    • loading
    • Bai, C. H., 2021. Research on Intelligent Prediction Method of Hazard Risk of Waterand Mudinrush in Karst Tunnel Based on Machine Learning (Dissertation). Shandong University, Jinan, 35-55 (in Chinese with English abstract).
      Chen, N., Xie, W., 2022. Research on Risk of Liquidity Cargo Shipping Based on Combined Weighting-DS Evidence Theory. Journal of Safety and Environment, 22(2): 623-633 (in Chinese with English abstract).
      Chen, Z., Yuan, H., Huang, P. Y., et al., 2023. Safety Risk Evaluation of Tunnel Collapse Based on Bayesian Network of Improving Conditional Probability. Journal of Central South University (Science and Technology), 54(1): 327-340 (in Chinese with English abstract).
      Dempster, A. P., 1967. Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2): 325-339. https://doi.org/10.1214/aoms/1177698950
      Hou, S. J., 2023. Study on the Prediction Model of Surrounding Rock Deformation in Soft Rock Tunnel Based on Multivariate Algorithm Fusion and Its Application. Modern Tunnelling Technology, 60(6): 151-164 (in Chinese with English abstract).
      Hu, L. Y., Huang, L., Wen, J. G., 2023. Discussion on Geophysical Exploration Technology and Digital Development in Geotechnical Engineering Investigation-Take a Karst Area in Wuhan as an Example. Informatization of China Construction, 29(7): 84-87 (in Chinese with English abstract).
      Huang, Z. Y., Lin, R. M., Liu, H., et al., 2024. Multi-Source Network Security Data Fusion Model Based on DS Evidence Theory. Modern Electronics Technique, 47(7): 115-121 (in Chinese with English abstract).
      Lei, W. P., Yin, J., Chen, S. S., et al., 2022. Application of Comprehensive Electrical Method in Karst Exploration of Water Diversion Line. Express Water Resources & Hydropower Information, 43(S2): 23-26, 31 (in Chinese with English abstract).
      Li, B. C., Wang, B., Wei, J., et al., 2002. An Efficient Combination Rule of Evidence Theory. Journal of Data Acquisition & Processing, 17(1): 33-36 (in Chinese with English abstract).
      Li, J., Yang, X. Z., Zhou, L., 2019. Research on Target Identification Based on Improved DS Evidence of Multi-Period Fusion Method. Fire Control & Command Control, 44(7): 43-48 (in Chinese with English abstract).
      Luo, L. R., Liu, Z. G., 2011. Comparative Analysis of Geological Prediction Methods in Karst Aeras. Chinese Journal of Geotechnical Engineering, 33(S1): 351-355 (in Chinese with English abstract).
      Luo, Y. M., 2024. Improvement of Dempster-Shafer Evidence Theory and Its Application in Debris Flow Hazard Assessment Model (Dissertation). Yunnan Normal University, Kunming, 16-33 (in Chinese with English abstract).
      Peng, C., 2016. The Combined Application of Seismic Imaging Method and High-Density Electric Method to the Survey of Karst Collapse Areas. Chinese Journal of Engineering Geophysics, 13(1): 60-63 (in Chinese with English abstract).
      Shafer, G. A., 1976. Mathematical Theory of Evidence. Princeton University Press, Princeton.
      Song, X. P., Xiao, J. Y., Wu, K. F., et al., 2021. Improved D-S Evidence Theory Algorithm for Solving Conflict Evidence Combination Problem. Journal of Hubei Minzu University (Natural Science Edition), 39(2): 180-186 (in Chinese with English abstract).
      Sun, Q., Ye, X. Q., Gu, W. K., 2000. A New Combination Rules of Evidence Theory. Acta Electronica Sinica, 28(8): 117-119 (in Chinese with English abstract).
      Sun, Y. J., Yu, G. Z., Shi, G., et al., 2001. The Cross-Well Seismic Computerized Tomography Technology and It's Application in the Cavern Survey. Computerized Tomography Theory and Applications, 10(4): 10-13 (in Chinese with English abstract).
      Wang, A. N., Li, Y. S., He, Z., 2020. State Evaluation of Fire Control System Based on Fusion of D-S Evidence Theory and Rough Set. Control Engineering of China, 27(12): 2176-2184 (in Chinese with English abstract).
      Wang, H., Wei, B., Li, S. Q., et al., 2024. Fault Diagnosis of a DC Distribution Network Based on Bayesian Network Information Fusion. Power System Protection and Control, 52(5): 61-72 (in Chinese with English abstract).
      Wang, K., 2024. Integration of Some Survey Methods to Detect the High-Speed Railway Tunnel Basement Karst-A Case Study of the Huajiashan Tunnel. Chinese Journal of Engineering Geophysics, 21(5): 810-819 (in Chinese with English abstract).
      Wang, X., Xu, T., Ran, J., et al., 2023. Identification and Evaluation on Shield Construction Risk of Metro Tunnel in Karst Area. Railway Investigation and Surveying, 49(3): 5-11 (in Chinese with English abstract).
      Yager, R. R., 1987. On the Dempster-Shafer Framework and New Combination Rules. Information Sciences, 41(2): 93-137. https://doi.org/10.1016/0020-0255(87)90007-7
      Yang, C. J., Pu, C., Xiong, H. M., et al., 2024. Research on Inrush Water Prediction Based on Fuzzy Analytic Hierarchy Process. Shanxi Architecture, 50(19): 167-170 (in Chinese with English abstract).
      Yang, Y. H., Huang, Z. F., 2001. Karst Geological Problems and Their Countermeasures in Southern Hubei Section of Beijing-Zhuhai Speedway. Earth Science, 26(4): 361-364 (in Chinese with English abstract).
      Zadeh, L. A., 1984. Review of Shafer's a Mathematical of Evidence. AI Magazine, 5(3): 81-83.
      Zhang, H., Lu, J. G., Tang, X. H., 2020. An Improved DS Evidence Theory Algorithm for Conflict Evidence. Journal of Beijing University of Aeronautics and Astronautics, 46(3): 616-623 (in Chinese with English abstract).
      Zhang, Y., 2021. The Application of Integrated Geophysical Prospecting Technology in Karst Exploration of Railway Subgrade. Chinese Journal of Engineering Geophysics, 18(5): 738-743 (in Chinese with English abstract).
      柏成浩, 2021. 基于机器学习的岩溶隧道突水突泥灾害风险智能预测方法研究(硕士学位论文). 济南: 山东大学, 35-55.
      陈宁, 谢旺, 2022. 基于组合赋权-DS证据理论的易流态化货物海运风险研究. 安全与环境学报, 22(2): 623-633.
      陈钊, 袁航, 黄鹏宇, 等, 2023. 基于改进条件概率的贝叶斯网络隧道坍塌安全风险评价. 中南大学学报(自然科学版), 54(1): 327-340.
      侯守江, 2023. 基于多元算法融合的软岩隧道围岩变形预测模型及应用研究. 现代隧道技术, 60(6): 151-164.
      胡励耘, 黄亮, 文家刚, 2023. 论岩土工程勘察中物探技术及数字化发展——以武汉某岩溶地段为例. 中国建设信息化, 29(7): 84-87.
      黄智勇, 林仁明, 刘宏, 等, 2024. 基于DS证据理论的多源网络安全数据融合模型. 现代电子技术, 47(7): 115-121.
      雷伟平, 尹剑, 陈爽爽, 等, 2022. 综合电法在引水线路岩溶勘察中的应用. 水利水电快报, 43(S2): 23-26, 31.
      李弼程, 王波, 魏俊, 等, 2002. 一种有效的证据理论合成公式. 数据采集与处理, 17(1): 33-36.
      李捷, 杨雪洲, 周亮, 2019. 基于改进DS理论多周期数据融合的目标识别方法. 火力与指挥控制, 44(7): 43-48.
      李文立, 郭凯红, 2010. D-S证据理论合成规则及冲突问题. 系统工程理论与实践, 30(8): 1422-1432.
      罗利锐, 刘志刚, 2011. 岩溶地区超前地质预报方法对比分析. 岩土工程学报, 33(S1): 351-355.
      罗雨梦, 2024. D-S证据理论的改进及其在泥石流危险性评价模型中的应用(硕士学位论文). 昆明: 云南师范大学, 16-33.
      彭超, 2016. 地震映象法与高密度电法在岩溶塌陷勘察中的联合应用. 工程地球物理学报, 13(1): 60-63.
      宋香鹏, 肖建于, 吴克凤, 等, 2021. 解决冲突证据合成问题的改进D-S证据理论算法. 湖北民族大学学报(自然科学版), 39(2): 180-186.
      孙全, 叶秀清, 顾伟康, 2000. 一种新的基于证据理论的合成公式. 电子学报, 28(8): 117-119.
      孙跃军, 俞国柱, 石桂, 等, 2001. 井间地震层析成像技术及其在岩溶勘察中的应用. CT理论与应用研究, 10(4): 10-13.
      王嫒娜, 李英顺, 贺喆, 2020. D-S证据理论融合粗糙集的火控系统状态评估. 控制工程, 27(12): 2176-2184.
      王鹤, 韦搏, 李石强, 等, 2024. 基于贝叶斯网络信息融合的直流配电网故障诊断方法. 电力系统保护与控制, 52(5): 61-72.
      王凯, 2024. 多种勘察方法探测高铁隧道基底岩溶——以华家山隧道为例. 工程地球物理学报, 21(5): 810-819.
      王祥, 徐甜, 冉军, 等, 2023. 岩溶地区地铁隧道盾构施工风险识别与评价研究. 铁道勘察, 49(3): 5-11.
      杨超杰, 蒲超, 熊昊旻, 等, 2024. 基于模糊层次分析法的涌突水预测研究. 山西建筑, 50(19): 167-170.
      杨银湖, 黄正发, 2001. 京珠线湖北省南段岩溶地质问题与勘察对策. 地球科学, 26(4): 361-364. http://www.earth-science.net/article/id/851
      张欢, 陆见光, 唐向红, 2020. 面向冲突证据的改进DS证据理论算法. 北京航空航天大学学报, 46(3): 616-623.
      张业, 2021. 综合物探方法在铁路路基岩溶勘察中的应用. 工程地球物理学报, 18(5): 738-743.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (179) PDF downloads(12) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return