• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Cheng Yi, Xie Xinyue, Zuo Changqun, Xiao Shujun, 2025. Characteristics of Twinning in Marble with Stable Faulting Process. Earth Science, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152
    Citation: Cheng Yi, Xie Xinyue, Zuo Changqun, Xiao Shujun, 2025. Characteristics of Twinning in Marble with Stable Faulting Process. Earth Science, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152

    Characteristics of Twinning in Marble with Stable Faulting Process

    doi: 10.3799/dqkx.2024.152
    • Received Date: 2024-09-12
      Available Online: 2025-07-11
    • Publish Date: 2025-06-25
    • Twinning is one the micromechanisms of plastic deformation of marble. To investigate the twinning performance during faulting, shear ruptures with different deformations were induced in Hezhou marble. Microscopic observation and quantitative analysis were performed on twinning characteristics in cross sections perpendicular to faulting plane. The results show that the twinning in the faulting zone was obviously different from that outside of the zone, presenting the characteristics of localization, kinking, thickening, bifurcation and spiking out, which is largely controlled by the relation between the shear direction and twin plane dip. Twin density of the entire sample increased slightly after loading, while twin incidence fluctuated in high level. The average twin width was not affected by loading, however, the maximum twin width increased steadily up to three times with faulting deformation. The above results show that under low confining pressure, the twinning of Hezhou marble is unobvious overall, but concentrated in the shear zone, mainly manifested by the increase of the width of the twin. The apparent characteristics of twinning are controlled by the relative relationship between the shear direction and the inclination of the twin lamellae.

       

    • loading
    • Barber, D. J., Wenk, H. R., 1979. Deformation Twinning in Calcite, Dolomite, and Other Rhombohedral Carbonates. Physics and Chemistry of Minerals, 5(2): 141-165. https://doi.org/10.1007/bf00307550
      Beyerlein, I. J., McCabe, R. J., Tomé, C. N., 2011. Effect of Microstructure on the Nucleation of Deformation Twins in Polycrystalline High-Purity Magnesium: A Multi-Scale Modeling Study. Journal of the Mechanics and Physics of Solids, 59(5): 988-1003. https://doi.org/10.1016/j.jmps.2011.02.007
      Burkhard, M., 1993. Calcite Twins, Their Geometry, Appearance and Significance as Stress-Strain Markers and Indicators of Tectonic Regime: A Review. Journal of Structural Geology, 15(3-5): 351-368. https://doi.org/10.1016/0191-8141(93)90132-t
      Carter, N. L., Kirby, S. H., 1978. Transient Creep and Semibrittle Behavior of Crystalline Rocks. Pure and Applied Geophysics, 116(4): 807-839. https://doi.org/10.1007/bf00876540
      Cheng, Y., Wong, L. N. Y., Maruvanchery, V., 2016. Transgranular Crack Nucleation in Carrara Marble of Brittle Failure. Rock Mechanics and Rock Engineering, 49(8): 3069-3082. https://doi.org/10.1007/s00603-016-0976-2
      Christian, J. W., Mahaja, S., 1995. Deformation Twinning. Progress in Materials Science, 39(1-2): 1-157.
      Covey-Crump, S. J., Schofield, P. F., Oliver, E. C., 2017. Using Neutron Diffraction to Examine the Onset of Mechanical Twinning in Calcite Rocks. Journal of Structural Geology, 100: 77-97. https://doi.org/10.1016/j.jsg.2017.05.009
      Ferrill, D. A., 1991. Calcite Twin Widths and Intensities as Metamorphic Indicators in Natural Low-Temperature Deformation of Limestone. Journal of Structural Geology, 13(6): 667-675. https://doi.org/10.1016/0191-8141(91)90029-I
      Ferrill, D. A., Morris, A. P., Evans, M. A., et al., 2004. Calcite Twin Morphology: A Low-Temperature Deformation Geothermometer. Journal of Structural Geology, 26(8): 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028
      Fredrich, J. T., Evans, B., Wong, T. F., 1990. Effect of Grain Size on Brittle and Semibrittle Strength: Implications for Micromechanical Modelling of Failure in Compression. Journal of Geophysical Research: Solid Earth, 95(B7): 10907-10920.
      González-Casado, J. M., Gumiel, P., Giner-Robles, J. L., et al., 2006. Calcite E-Twins as Markers of Recent Tectonics: Insights from Quaternary Karstic Deposits from SE Spain. Journal of Structural Geology, 28(6): 1084-1092. https://doi.org/10.1016/j.jsg.2006.03.019
      Handin, J., 1966. Section 10: STRENGTH and Ductility. In: Clark, S. P., ed., Handbook of Physical Constants. Geological Society of America, U. S. A., 223-290. https://doi.org/10.1130/mem97-p223
      Hu, L., Liu, J. L., Ji, M., et al., 2009. Identification Manual of Deformation Microstructure. Geological Publishing House, Beijing(in Chinese).
      Kirby, S. H., Kronenberg, A. K., 1984. Deformation of Clinopyroxenite: Evidence for a Transition in Flow Mechanisms and Semibrittle Behavior. Journal of Geophysical Research: Solid Earth, 89(B5): 3177-3192. https://doi.org/10.1029/jb089ib05p03177
      Liu, H. L., Li, Z. Q., Yuan, S. H., et al., 2020. Microstructural Characteristics of Shuipuzi-Lishugou Ductile Shear Zone on the West Side of Miyun Reservoir in Beijing, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 395-410, 442(in Chinese with English abstract).
      Menéndez, B., Zhu, W. L., Wong, T. F., 1996. Micromechanics of Brittle Faulting and Cataclastic Flow in Berea Sandstone. Journal of Structural Geology, 18(1): 1-16. https://doi.org/10.1016/0191-8141(95)00076-p
      Niu, L., 2021. Experimental Study on Unsteady Rheology of Marble and Granite (Dissertation). Institute of Geology, China Earthquake Administration, Beijing(in Chinese with English abstract).
      Olsson, W. A., Peng, S. S., 1976. Microcrack Nucleation in Marble. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(2): 53-59. https://doi.org/10.1016/0148-9062(76)90704-x
      Paterson, M. S., Wong, T. F., 2005. Experimental Rock Deformation—The Brittle Field. Springer, Netherlands.
      Rowe, K. J., Rutter, E. H., 1990. Palaeostress Estimation Using Calcite Twinning: Experimental Calibration and Application to Nature. Journal of Structural Geology, 12(1): 1-17. https://doi.org/10.1016/0191-8141(90)90044-Y
      Rybacki, E., Evans, B., Janssen, C., et al., 2013. Influence of Stress, Temperature, and Strain on Calcite Twins Constrained by Deformation Experiments. Tectonophysics, 601: 20-36. https://doi.org/10.1016/j.tecto.2013.04.021
      Rybacki, E., Niu, L., Evans, B., 2021. Semi-Brittle Deformation of Carrara Marble: Hardening and Twinning Induced Plasticity. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022573. https://doi.org/10.1029/2021jb022573
      Sakaguchi, A., Sakaguchi, H., Nishiura, D., et al., 2011. Elastic Stress Indication in Elastically Rebounded Rock. Geophysical Research Letters, 38(9): L09316. https://doi.org/10.1029/2011gl047055
      Sari, M., Sarout, J., Poulet, T., et al., 2022. The Brittle-Ductile Transition and the Formation of Compaction Bands in the Savonnières Limestone: Impact of the Stress and Pore Fluid. Rock Mechanics and Rock Engineering, 55(11): 6541-6553. https://doi.org/10.1007/s00603-022-02963-z
      Tullis, J., Yund, R., 1992. Chapter 4 The Brittle-Ductile Transition in Feldspar Aggregates: An Experimental Study. Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W. F. Brace. Elsevier, Amsterdam, 89-117. https://doi.org/10.1016/s0074-6142(08)62816-8
      Turner, F. J., 1953. Nature and Dynamic Interpretation of Deformation Lamellae in Calcite of Three Marbles. American Journal of Science, 251(4): 276-298. https://doi.org/10.2475/ajs.251.4.276
      Wang, Z. C., Wang, S. Z., 1990. Experimental Study on Semi-Brittle Behavior of Rocks at Temperature and Pressure Corresponding to Middle-Lower Crust. Seismology and Geology, 12(4): 335-342, 390(in Chinese with English abstract).
      Weiss, L. E., 1954. A Study of Tectonic Style Structural Investigation of a Marble Quartzite Complex in Southern California. University of California Publications in Geological Science, 30(1): 79-80.
      Wong, T. F., David, C., Zhu, W. L., 1997. The Transition from Brittle Faulting to Cataclastic Flow in Porous Sandstones: Mechanical Deformation. Journal of Geophysical Research: Solid Earth, 102(B2): 3009-3025. https://doi.org/10.1029/96jb03281
      Xie, X. Y., Cheng, Y., Li, S. L., et al., 2024. Influence of Mineral Composition and Grain Size on Mechanical Properties of Marble. Chinese Journal of Rock Mechanics and Engineering, 43(Suppl. 1): 3280-3295(in Chinese with English abstract).
      Zhang, C. S., Chen, X. R., Hou, J., et al., 2010. Study of Mechanical Behavior of Deep-Buried Marble at Jinping Ⅱ Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 29(10): 1999-2009(in Chinese with English abstract).
      Zhang, G. N., Song, M. S., Li, J. F., et al., 2018. Microstructural Characteristics and Deformation Mechanism of Carrara Marble in Axial Compression Experiments. Geotectonica et Metallogenia, 42(5): 786-797(in Chinese with English abstract).
      Zhang, X. Y., Sun, W. Y., Fan, J. P., et al., 2021. Geological Characteristics and Genesis of the Shuijingshan Marble Deposit in the Pinggui District, Hezhou City, Guangxi. Geology and Exploration, 57(5): 1087-1098(in Chinese with English abstract).
      Zhao, X. P., Zuo, J. P., Pei, J. L., 2012. Meso-Experimental Study of Fracture Mechanism of Bedded Marble in Jinping. Chinese Journal of Rock Mechanics and Engineering, 31(3): 534-542(in Chinese with English abstract).
      胡玲, 刘俊来, 纪沫, 等, 2009. 变形显微构造识别手册. 北京: 地质出版社.
      刘恒麟, 李忠权, 袁四化, 等, 2020. 北京市密云水库西水堡子-梨树沟韧性剪切带显微构造特征. 成都理工大学学报(自然科学版), 47(4): 395-410, 442.
      牛露, 2021. 大理岩和花岗岩的非稳态流变实验研究(博士学位论文). 北京: 中国地震局地质研究所.
      王子潮, 王绳祖, 1990. 中下地壳温度压力条件下岩石半脆性蠕变的实验研究. 地震地质, 12(4): 335-342, 390.
      谢欣玥, 程毅, 李松龄, 等, 2024. 大理岩矿物成分及粒径对力学性质的影响. 岩石力学与工程学报, 43(增刊1): 3280-3295.
      张春生, 陈祥荣, 侯靖, 等, 2010. 锦屏二级水电站深埋大理岩力学特性研究. 岩石力学与工程学报, 29(10): 1999-2009.
      张桂男, 宋茂双, 李建峰, 等, 2018. Carrara大理岩在轴向压缩实验过程中的显微构造特征及变形机制研究. 大地构造与成矿学, 42(5): 786-797.
      张学义, 孙文燕, 樊晋鹏, 等, 2021. 广西贺州平桂区水井山矿区大理石矿床地质特征及成因. 地质与勘探, 57(5): 1087-1098.
      赵小平, 左建平, 裴建良, 2012. 锦屏层状大理岩断裂机制的细观试验研究. 岩石力学与工程学报, 31(3): 534-542.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(3)

      Article views (87) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return