• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Jia Zhuo, Cheng Zhijin, Chang Zhilu, Li Qin, Peng Yuhao, Jiang Bingchen, Huang Faming, 2025. Modeling and Uncertainty in Landslide Susceptibility Prediction Considering Coupling Mode of Landslide Types. Earth Science, 50(6): 2311-2329. doi: 10.3799/dqkx.2025.008
    Citation: Jia Zhuo, Cheng Zhijin, Chang Zhilu, Li Qin, Peng Yuhao, Jiang Bingchen, Huang Faming, 2025. Modeling and Uncertainty in Landslide Susceptibility Prediction Considering Coupling Mode of Landslide Types. Earth Science, 50(6): 2311-2329. doi: 10.3799/dqkx.2025.008

    Modeling and Uncertainty in Landslide Susceptibility Prediction Considering Coupling Mode of Landslide Types

    doi: 10.3799/dqkx.2025.008
    • Received Date: 2024-09-28
    • Publish Date: 2025-06-25
    • In order to comprehensively consider the differences between different types of landslides, improve the accuracy and engineering application value of landslide susceptibility prediction, taking Wanzhou District, Chongqing City as an example, support vector machine, C5.0 decision tree, logistic regression, and multilayer perceptron models were applied to model the susceptibility of a single stacked layer landslide and rockfall. Based on the optimal comprehensive performance model, direct coupling method, probability statistics method, and susceptibility comparison method were used to couple and model different types of landslides, and their uncertainties were evaluated. The results show that the C5.0 decision tree model performs best in susceptibility prediction for single-type landslides, with AUC values exceeding 0.930. The susceptibility prediction results of the three coupling methods are generally consistent with the actual situation, among which the comparative susceptibility method exhibits higher AUC values and accuracy in frequency ratio, demonstrating the best predictive performance. The probabilistic statistical method ranks second, followed by the direct coupling method. In terms of comprehensively reflecting the evolution patterns of landslides, adapting to actual scenarios, and supporting prevention and control decisions, considering the coupling of landslide types yields better landslide susceptibility predictions than considering only single-type landslides. However, it is still necessary to explore the specificity among different types of landslides and optimize coupling methods in greater depth in the future.

       

    • loading
    • Cao, J., Zhang, Z., Wang, C. Z., et al., 2019. Susceptibility Assessment of Landslides Triggered by Earthquakes in the Western Sichuan Plateau. CATENA, 175: 63-76. https://doi.org/10.1016/j.catena.2018.12.013
      Chen, W., Pourghasemi, H. R., Naghibi, S. A., 2018. A Comparative Study of Landslide Susceptibility Maps Produced Using Support Vector Machine with Different Kernel Functions and Entropy Data Mining Models in China. Bulletin of Engineering Geology and the Environment, 77(2): 647-664. https://doi.org/10.1007/s10064-017-1010-y
      Deng, M. D., Ju, N. P., Wu, T. W., et al., 2024. Evaluation of Susceptibility under Different Landslide Sample Points and Polygonal Expression Modes. Earth Science, 49(5): 1565-1583(in Chinese with English abstract).
      Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674(in Chinese with English abstract).
      Feby, B., Achu, A. L., Jimnisha, K., et al., 2020. Landslide Susceptibility Modelling Using Integrated Evidential Belief Function Based Logistic Regression Method: A Study from Southern Western Ghats, India. Remote Sensing Applications: Society and Environment, 20: 100411. https://doi.org/10.1016/j.rsase.2020.100411
      Fu, Z. Y., Li, D. Q., Wang, S., et al., 2023. Landslide Susceptibility Assessment Based on Multitemporal Landslide Inventories and TrAdaBoost Transfer Learning. Earth Science, 48(5): 1935-1947(in Chinese with English abstract).
      Gao, X. Y., Wang, J. Z., Mao, X., et al., 2023. The Susceptibility Assessment of Landslide Based on Bi-GRU Network. Science of Surveying and Mapping, 48(4): 221-230(in Chinese with English abstract).
      Golkarian, A., Naghibi, S. A., Kalantar, B., et al., 2018. Groundwater Potential Mapping Using C5.0, Random Forest, and Multivariate Adaptive Regression Spline Models in GIS. Environmental Monitoring and Assessment, 190: 149. https://doi.org/10.1007/s10661-018-6507-8
      Guo, Z. Z., Shi, Y., Huang, F. M., et al., 2021. Landslide Susceptibility Zonation Method Based on C5.0 Decision Tree and K-Means Cluster Algorithms to Improve the Efficiency of Risk Management. Geoscience Frontiers, 12(6): 101249. https://doi.org/10.1016/j.gsf.2021.101249
      Guo, Z. Z., Yin, K. L., Huang, F. M., et al., 2019. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300(in Chinese with English abstract).
      He, R. J., Zhang, W. G., Dou, J., et al., 2024. Application of Artificial Intelligence in Three Aspects of Landslide Risk Assessment: A Comprehensive Review. Rock Mechanics Bulletin, 3(4): 100144. https://doi.org/10.1016/j.rockmb.2024.100144
      Hong, H. Y., Tsangaratos, P., Ilia, I., et al., 2020. Introducing a Novel Multi-Layer Perceptron Network Based on Stochastic Gradient Descent Optimized by a Meta-Heuristic Algorithm for Landslide Susceptibility Mapping. Science of the Total Environment, 742: 140549. https://doi.org/10.1016/j.scitotenv.2020.140549
      Huang, F. M., Teng, Z. K., Guo, Z. Z., et al., 2023. Uncertainties of Landslide Susceptibility Prediction: Influences of Different Spatial Resolutions, Machine Learning Models and Proportions of Training and Testing Dataset. Rock Mechanics Bulletin, 2(1): 100028. https://doi.org/10.1016/j.rockmb.2023.100028
      Huang, F. M., Xiong, H. W., Yao, C., et al., 2023. Uncertainties of Landslide Susceptibility Prediction Considering Different Landslide Types. Journal of Rock Mechanics and Geotechnical Engineering, 15(11): 2954-2972. https://doi.org/10.1016/j.jrmge.2023.03.001
      Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
      Huang, X., Huang, J., He, Z. C., et al., 2024. Study on the Method of Estimating the Volume of Fragmental Rockfall Based on Image Recognition. Hydrogeology & Engineering Geology, 51(3): 140-148(in Chinese with English abstract).
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Kaya Topaçli, Z., Ozcan, A. K., Gokceoglu, C., 2024. Performance Comparison of Landslide Susceptibility Maps Derived from Logistic Regression and Random Forest Models in the Bolaman Basin, Türkiye. Natural Hazards Review, 25(1): 04023054. https://doi.org/10.1061/nhrefo.nheng-1771
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795(in Chinese with English abstract).
      Liu, H. Z., Xu, H., Bao, H. J., et al., 2022. Optimization Experiment of Early Identification of Landslides Susceptibility Areas in Medium and Small Mountainous Catchment Based on Ensemble Learning. Advanced Engineering Sciences, 54(6): 12-20(in Chinese with English abstract).
      Liu, J. P., Liang, E. J., Xu, S. H., et al., 2022. Multi-Kernel Support Vector Machine Considering Sample Optimization Selection for Analysis and Evaluation of Landslide Disaster Susceptibility. Acta Geodaetica et Cartographica Sinica, 51(10): 2034-2045(in Chinese with English abstract).
      Liu, Z. Q., Gilbert, G., Cepeda, J. M., et al., 2021. Modelling of Shallow Landslides with Machine Learning Algorithms. Geoscience Frontiers, 12(1): 385-393. https://doi.org/10.1016/j.gsf.2020.04.014
      Ma, X. J., Zhang, Y. F., Hou, L. J., et al., 2021. Study on Classification and Formation Mechanism of Landslide in Red Bed Area. Railway Engineering, 61(2): 75-78(in Chinese with English abstract).
      Miao, F. S., Wu, Y. P., Li, L. W., et al., 2021. Prediction of Joint Roughness Coefficient of Rock Mass Based on Boosting-Decision Tree C5.0. Journal of Zhejiang University (Engineering Science), 55(3): 483-490(in Chinese with English abstract).
      Nava, L., Carraro, E., Reyes-Carmona, C., et al., 2023. Landslide Displacement Forecasting Using Deep Learning and Monitoring Data across Selected Sites. Landslides, 20(10): 2111-2129. https://doi.org/10.1007/s10346-023-02104-9
      Nsengiyumva, J. B., Luo, G. P., Amanambu, A. C., et al., 2019. Comparing Probabilistic and Statistical Methods in Landslide Susceptibility Modeling in Rwanda/Centre-Eastern Africa. Science of The Total Environment, 659: 1457-1472. https://doi.org/10.1016/j.scitotenv.2018.12.248
      Song, Z. F., Zhang, Y., She, T., et al., 2023. Determination of Regional Landslide Rainfall Warning Threshold Based on Susceptibility Zoning: A Case Study in Longling County of Yunnan Province. The Chinese Journal of Geological Hazard and Control, 34(4): 22-29(in Chinese with English abstract).
      Sun, C. M., Ma, R. Y., Shang, H. X., et al., 2020. Landslide Susceptibility Assessment in Xining Based on Landslide Classification. Hydrogeology & Engineering Geology, 47(3): 173-181(in Chinese with English abstract).
      Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608(in Chinese with English abstract).
      Tien Bui, D., Tuan, T. A., Klempe, H., et al., 2016. Spatial Prediction Models for Shallow Landslide Hazards: A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree. Landslides, 13(2): 361-378. https://doi.org/10.1007/s10346-015-0557-6
      Varnes, D. J., 1958. Landslide Types and Processes. Landslides and Engineering Practice, 24: 20-47.
      Xu, C., Dai, F. C., Xu, X. W., et al., 2012. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China. Geomorphology, 145: 70-80. https://doi.org/10.1016/j.geomorph.2011.12.040
      Zeng, T. R., Wang, L. F., Zhang, Y., et al., 2024. Landslide Susceptibility Modeling and Interpretability Based on CatBoost-SHAP Model. The Chinese Journal of Geological Hazard and Control, 35(1): 37-50(in Chinese with English abstract).
      Zhang, L. F., Wang, J. Y., Zhang, M. S., et al., 2022. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network. Northwestern Geology, 55(2): 260-270(in Chinese with English abstract).
      Zhang, X. C., Jiang, Y. L., Wang, Y. J., et al., 2024. Evaluation of Landslide Susceptibility Based on Multi-Objective Optimization Method. Journal of Soil and Water Conservation, 38(1): 104-112, 121(in Chinese with English abstract).
      Zhang, Y. B., Xu, P. Y., Liu, J., et al., 2023. Comparison of LR, 5-CV SVM, GA SVM, and PSO SVM for Landslide Susceptibility Assessment in Tibetan Plateau Area, China. Journal of Mountain Science, 20(4): 979-995. https://doi.org/10.1007/s11629-022-7685-y
      Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Computers & Geosciences, 112: 23-37. https://doi.org/10.1016/j.cageo.2017.11.019
      邓明东, 巨能攀, 吴天伟, 等, 2024. 不同滑坡样本点和多边形表达模式下的易发性评价. 地球科学, 49(5): 1565-1583.
      窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657-1674
      付智勇, 李典庆, 王顺, 等, 2023. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价. 地球科学, 48(5): 1935-1947.
      高轩宇, 王继周, 毛曦, 等, 2023. 双向门控循环单元网络的滑坡易发性评价. 测绘科学, 48(4): 221-230.
      郭子正, 殷坤龙, 黄发明, 等, 2019. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300.
      黄祥, 黄健, 贺子城, 等, 2024. 基于图像识别估算碎裂岩崩体积方法研究. 水文地质工程地质, 51(3): 140-148.
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795.
      刘海知, 徐辉, 包红军, 等, 2022. 基于集成学习的山区中小流域滑坡易发区早期识别优化试验. 工程科学与技术, 54(6): 12-20.
      刘纪平, 梁恩婕, 徐胜华, 等, 2022. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价. 测绘学报, 51(10): 2034-2045.
      马贤杰, 张玉芳, 侯李杰, 等, 2021. 红层地区滑坡的分类及形成机制. 铁道建筑, 61(2): 75-78.
      苗发盛, 吴益平, 李麟玮, 等, 2021. 基于Boosting-决策树C5.0的岩体结构面粗糙度预测. 浙江大学学报(工学版), 55(3): 483-490.
      宋昭富, 张勇, 佘涛, 等, 2023. 基于易发性分区的区域滑坡降雨预警阈值确定: 以云南龙陵县为例. 中国地质灾害与防治学报, 34(4): 22-29.
      孙长明, 马润勇, 尚合欣, 等, 2020. 基于滑坡分类的西宁市滑坡易发性评价. 水文地质工程地质, 47(3): 173-181.
      唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608.
      曾韬睿, 王林峰, 张俞, 等, 2024. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性. 中国地质灾害与防治学报, 35(1): 37-50.
      张林梵, 王佳运, 张茂省, 等, 2022. 基于BP神经网络的区域滑坡易发性评价. 西北地质, 55(2): 260-270.
      张兴存, 蒋玉琳, 王玉杰, 等, 2024. 基于多目标优化方法的滑坡易发性评价. 水土保持学报, 38(1): 104-112, 121.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(5)

      Article views (285) PDF downloads(26) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return