• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Li Honghui, Li Wei, Yue Dali, Xu Zhenhua, Tan Ling, Wu Guangzhen, Wang Wurong, 2025. Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas. Earth Science, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014
    Citation: Li Honghui, Li Wei, Yue Dali, Xu Zhenhua, Tan Ling, Wu Guangzhen, Wang Wurong, 2025. Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas. Earth Science, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014

    Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas

    doi: 10.3799/dqkx.2025.014
    • Received Date: 2025-01-03
    • Publish Date: 2025-06-25
    • Discharge variability significantly impacts the sedimentary characteristics and growth processes of river-dominated shallow-water deltas. In this study it aims to explore the macroscopic morphology and internal architecture of deltas under different discharge variability conditions. Based on modern sedimentological and hydrological data, numerical simulations of deltaic sedimentation under varying discharge conditions were conducted using a hydrodynamic modeling software. The findings indicate that flow variation controls channel migration rates and avulsion frequencies, thereby influencing the geomorphic and architectural features of deltas. Under high flow variation conditions, deltas exhibit fan-shaped geometries, frequent avulsion, bifurcation, and abandonment of distributary channels, resulting in complex channel networks. Channel numbers increase significantly, sedimentary material expands laterally, delta areas grow larger, and shorelines become smoother. In contrast, under low flow variation conditions, deltas are primarily bird-foot shaped, with fewer and more stable distributary channels. Sediments concentrate at the river mouth, and shoreline roughness is higher. These findings provide a scientific basis for analyzing similar deltaic sedimentary patterns and predicting hydrocarbon reservoir architectures.

       

    • loading
    • Burpee, A. P., Slingerland, R. L., Edmonds, D. A., et al., 2015. Grain⁃Size Controls on the Morphology and Internal Geometry of River⁃Dominated Deltas. Journal of Sedimentary Research, 85(6): 699-714. https://doi.org/10.2110/jsr.2015.39
      Caldwell, R. L., Edmonds, D. A., 2014. The Effects of Sediment Properties on Deltaic Processes and Morphologies: A Numerical Modeling Study. Journal of Geophysical Research: Earth Surface, 119(5): 961-982. https://doi.org/10.1002/2013JF002965
      Cheng, C., Fu, W. X., Hu, Z. L., et al., 2015. Changes of Major Lakes in Central Asia over the Past 30 Years Revealed by Remote Sensing Technology. Remote Sensing for Land & Resources, 27(1): 146-152 (in Chinese with English abstract).
      Deltares, 2014. Delft3D⁃Flow: Simulation of Multi⁃Dimensional Hydrodynaminc Flows and Transport Phenomena, Including Sediments⁃User Manual. Delft, Netherlands.
      Donaldson, A. C., 1974. Pennsylvanian Sedimentation of Central Appalachians. In: Briggs, G., ed., Carboniferous of the Southeastern United States. Geological Society of America, U. S. A., 47-78. https://doi.org/10.1130/spe148⁃p47
      Donselaar, M. E., Cuevas Gozalo, M. C., Moyano, S., 2013. Avulsion Processes at the Terminus of Low⁃Gradient Semi⁃Arid Fluvial Systems: Lessons from the Río Colorado, Altiplano Endorheic Basin, Bolivia. Sedimentary Geology, 283: 1-14. https://doi.org/10.1016/j.sedgeo.2012.10.007
      Du, W., Qiu, C. G., Jia, S., et al., 2022. Quantitative Characterization of River⁃Dominated Deltaic Morphology Based on Analysis of Dominant Controlling Factors. Petroleum Geology and Recovery Efficiency, 29(5): 1-14 (in Chinese with English abstract).
      Edmonds, D., Slingerland, R., Best, J., et al., 2010. Response of River⁃Dominated Delta Channel Networks to Permanent Changes in River Discharge. Geophysical Research Letters, 37(12): 107. https://doi.org/10.1029/2010gl043269
      Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., et al., 2020. Coastal Flooding will Disproportionately Impact People on River Deltas. Nature Communications, 11: 4741. https://doi.org/10.1038/s41467⁃020⁃18531⁃4
      Feng, W. J., Wu, S. H., Zhang, K., et al., 2017. Depositional Process and Sedimentary Model of Meandering⁃River Shallow Delta: Insights from Numerical Simulation and Modern Deposition. Acta Geologica Sinica, 91(9): 2047-2064(in Chinese with English abstract).
      Galloway, W. E., 1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems. Deltas: Models for Exploration. Houston Geological Society, Houston, Texas, US, 87-98.
      Hansford, M. R., Björklund, P. P., 2020. River Discharge Variability as the Link between Climate and Fluvial Fan Formation. Geology, 48(10): 952-956. https://doi.org/10.1130/g47471.1
      Heitmuller, F. T., Hudson, P. F., Kesel, R. H., 2017. Overbank Sedimentation from the Historic A. D. 2011 Flood along the Lower Mississippi River, USA. Geology, 45(2): 107-110. https://doi.org/10.1130/g38546.1
      Hu, G. M., Deng, R. F., Tang, Y. J., et al., 2023. Influence of Palaeogeomorphology and Paleoclimate on Coarse Clastic Deposition in Fan Delta: Comparison Experiment of Deposition Physical Simulation Based on Upper Wuerhe Formation in Zhongguai Area of Junggar Basin. Journal of Yangtze University (Natural Science Edition), 20(3): 12-22(in Chinese with English abstract).
      Huang, J., She, J. W., 2020. Vulnerability Assessment and Influencing Factors Analysis of Urban Flood Disaster in Yangtze River Delta City Cluster. Journal of Hohai University (Philosophy and Social Sciences), 22(6): 39-45 (in Chinese with English abstract).
      Li, C. S., Zhang, W. X., Lei, Y., et al., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574(in Chinese with English abstract).
      Li, W., Colombera, L., Yue, D. L., et al., 2023. Controls on the Morphology of Braided Rivers and Braid Bars: An Empirical Characterization of Numerical Models. Sedimentology, 70(1): 259-279. https://doi.org/10.1111/sed.13040
      Li, W., Yue, D. L., Wang, W. R., et al., 2023. Depositional Models of Braided Rivers: Characteristics of Sedimentary Evolution and Architecture. Journal of Palaeogeography, 25(5): 1032-1048(in Chinese with English abstract).
      Li, X. B., Liu, H. Q., Deng, X. Q., et al., 2021. The Concept of Fluvial Fans in an Arid Environment: A New Explanation of the Origin of" Sand⁃Filled Basins" in the Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 39(5): 1208-1221(in Chinese with English abstract).
      Nardin, W., Edmonds, D. A., Fagherazzi, S., 2016. Influence of Vegetation on Spatial Patterns of Sediment Deposition in Deltaic Islands during Flood. Advances in Water Resources, 93: 236-248. https://doi.org/10.1016/j.advwatres.2016.01.001
      Olariu, C., Bhattacharya, J. P., Leybourne, M. I., et al., 2012. Interplay between River Discharge and Topography of the Basin Floor in a Hyperpycnal Lacustrine Delta. Sedimentology, 59(2): 704-728. https://doi.org/10.1111/j.1365⁃3091.2011.01272.x
      Postma, G., 1990. An Analysis of the Variation in Delta Architecture. Terra Nova, 2(2): 124-130. https://doi.org/10.1111/j.1365⁃3121.1990.tb00052.x
      Simpson, G., Castelltort, S., 2012. Model Shows That Rivers Transmit High⁃Frequency Climate Cycles to the Sedimentary Record. Geology, 40(12): 1131-1134. https://doi.org/10.1130/G33451.1
      Sun, H. Y., Wang, C. Y., Niu, Z., et al., 1998. Analysis of the Vegetation Cover Change and the Relationship between NDVI and Environmental Factors by Using NOAA Time Series Data. Journal of Remote Sensing, 2(3): 204-210(in Chinese with English abstract).
      Sun, J., Xue, J. J., Hou, G. F., et al., 2020. Shallow⁃Water Delta Reservoir Characterization and Exploration Prospect in the Sangonghe Formation of Mobei Block. Special Oil & Gas Reservoirs, 27(3): 34-39(in Chinese with English abstract).
      Tan, C. P., Yu, X. H., Liu, B. B., et al., 2018. Sedimentary Structures Formed under Upper⁃Flow⁃Regime in Seasonal River System: A Case Study of Bantanzi River, Daihai Lake, Inner Mongolia. Journal of Palaeogeography, 20(6): 929-940(in Chinese with English abstract).
      Visconti, F., Camporeale, C., Ridolfi, L., 2010. Role of Discharge Variability on Pseudomeandering Channel Morphodynamics: Results from Laboratory Experiments. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/10.1029/2010jf001742
      Wang, B., Ding, Q. H., 2008. Global Monsoon: Dominant Mode of Annual Variation in the Tropics. Dynamics of Atmospheres and Oceans, 44(3-4): 165-183. https://doi.org/10.1016/j.dynatmoce.2007.05.002
      Wu, S. H., Xu, Z. H., Liu, Z., 2019. Depositional Architecture of Fluvial⁃Dominated Shoal Water Delta. Journal of Palaeogeography, 21(2): 202-215 (in Chinese with English abstract).
      Xu, Z. F., Wang, X. W., 2021. Flood Risk Analysis of Local Heavy Storms in the Embanked Tidal River Plain: A Case Study behind the Zhongshan⁃Shunde Joint Levee in the Lower Pearl River Delta. Water Resources and Hydropower Engineering, 52(8): 51-65(in Chinese with English abstract).
      Xu, Z. H., Wu, S. H., Liu, M. C., et al., 2021. Effects of Water Discharge on River⁃Dominated Delta Growth. Petroleum Science, 18(6): 1630-1649. https://doi.org/10.1016/j.petsci.2021.09.027
      Yang, Y. M., Wang, X. J., Chen, S. L., et al., 2022. Sedimentary System Evolution and Sandbody Development Characteristics of Jurassic Shaximiao Formation in the Central Sichuan Basin. Natural Gas Industry, 42(1): 12-24(in Chinese with English abstract).
      Zeng, C., Yin, T. J., Song, Y. K., 2017. Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta. Earth Science, 42(11): 2095-2104 (in Chinese with English abstract).
      Zhang, L., Bao, Z. D., Dou, L. X., et al., 2018. Sedimentary Characteristics and Pattern of Distributary Channels in Shallow Water Deltaic Red Bed Succession: A Case from the Late Cretaceous Yaojia Formation, Southern Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 171: 1171-1190. doi: 10.1016/j.petrol.2018.08.006
      Zhu, X. M., Liu, Y., Fang, Q., et al., 2012. Formation and Sedimentary Model of Shallow Delta in Large⁃Scale Lake. Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 19(1): 89-99(in Chinese with English abstract).
      Zhu, X. M., Zeng, H. L., Li, S. L., et al., 2017. Sedimentary Characteristics and Seismic Geomorphologic Responses of a Shallow⁃Water Delta in the Qingshankou Formation from the Songliao Basin, China. Marine and Petroleum Geology, 79: 131-148. https://doi.org/10.1016/j.marpetgeo.2016.09.01
      成晨, 傅文学, 胡召玲, 等, 2015. 基于遥感技术的近30年中亚地区主要湖泊变化. 国土资源遥感, 27(1): 146-152.
      杜威, 邱春光, 贾屾, 等, 2022. 基于主控因素分析的河控三角洲形态定量表征. 油气地质与采收率, 29(5): 1-14.
      冯文杰, 吴胜和, 张可, 等, 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047-2064.
      胡光明, 邓儒风, 唐友军, 等, 2023. 古地貌与古气候对扇三角洲中粗碎屑沉积的影响研究: 基于准噶尔盆地中拐地区上乌尔禾组的沉积物理模拟对比实验. 长江大学学报(自然科学版), 20(3): 12-22.
      黄晶, 佘靖雯, 2020. 长江三角洲城市群洪涝灾害脆弱性评估及影响因素分析. 河海大学学报(哲学社会科学版), 22(6): 39-45.
      李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007
      李伟, 岳大力, 王武荣, 等, 2023. 辫状河沉积构型研究进展: 沉积演化与构型特征. 古地理学报, 25(5): 1032-1048.
      李相博, 刘化清, 邓秀芹, 等, 2021. 干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂" 成因新解. 沉积学报, 39(5): 1208-1221.
      孙红雨, 王长耀, 牛铮, 等, 1998. 中国地表植被覆盖变化及其与气候因子关系: 基于NOAA时间序列数据分析. 遥感学报, 2(3): 204-210.
      孙靖, 薛晶晶, 厚刚福, 等, 2020. 莫北区块三工河组浅水三角洲储层特征及勘探前景. 特种油气藏, 27(3): 34-39.
      谭程鹏, 于兴河, 刘蓓蓓, 等, 2018. 季节性河流体系高流态沉积构造特征: 以内蒙古岱海湖半滩子河为例. 古地理学报, 20(6): 929-940.
      吴胜和, 徐振华, 刘钊, 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202-215.
      徐张帆, 王先伟, 2021. 平原联围感潮河网暴雨洪涝灾害风险分析: 以珠江三角洲中顺大围为例. 水利水电技术(中英文), 52(8): 51-65.
      杨跃明, 王小娟, 陈双玲, 等, 2022. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征. 天然气工业, 42(1): 12-24.
      曾灿, 尹太举, 宋亚开, 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134
      朱筱敏, 刘媛, 方庆, 等, 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (213) PDF downloads(31) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return