• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 7
    Jul.  2025
    Turn off MathJax
    Article Contents
    Chen Bo, Yang Jianghai, Ren Juntong, Cheng Liang, Liu Ao, Zhang Xiaorong, Ge Haili, Wang Jingfu, Huang Qing, Wang Biao, 2025. Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region. Earth Science, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019
    Citation: Chen Bo, Yang Jianghai, Ren Juntong, Cheng Liang, Liu Ao, Zhang Xiaorong, Ge Haili, Wang Jingfu, Huang Qing, Wang Biao, 2025. Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region. Earth Science, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019

    Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region

    doi: 10.3799/dqkx.2025.019
    • Received Date: 2024-10-10
    • Publish Date: 2025-07-25
    • Phosphorus (P) and aluminum (Al) are respectively recognized as a critical nutrient limiting element for biological processes and a significant metallic element. Within the near-surface environment, rock weathering is the predominant mechanism facilitating the release of these elements. Basalt, featuring abundance of phosphate mineral minerals (including basaltic glass and apatite) and aluminosilicate minerals (such as feldspar and pyroxene), constitutes a substantial rock reservoir for both P and Al elements. Despite the importance of these elements, a comprehensive understanding of the behavior of P and Al during basalt weathering remains an area ripe for further investigation. To enhance the understanding of the chemical weathering process of basalt, this study undertook a detailed examination of the weathering profile within the Emeishan Large Igneous Province(ELIP), employing mineralogical, geochemical, and phosphorus form analyses. Additionally, by integrating published data on basalt weathering profiles, the study explores the control mechanisms of physical erosion on the weathering leaching of P and Al elements and analyzes the weathering-deposition mineralization effects related to the Late Permian period.The basal section of Heishi weathering profile is characterized by a semi-weathered layer that is rich in primary minerals, including a substantial quantity of feldspar. Relative to the basaltic parent rock, this layer exhibits a markedly enhanced degree of chemical weathering, as indicated by Chemical Index of Alteration (CIA) values of 40 for the parent rock and a range of 72 to 83 for the semi-weathered layer. The upper section of the profile comprises a soil layer that incorporates quartz, hematite, and various clay minerals, reflecting an advanced stage of weathering, with CIA values that extend from 90 to 92. Utilizing the stability of Ti and normalization to the parent rock for calculating the mobility of elements, the results indicate that there is a varying degree of loss of Na, Ca, Mg, P, and Eu from the bottom up. Fe, K, and Ce show significant depletion in the semi-weathered layer but are relatively enriched in the soil layer. Al is relatively depleted in the soil layer, while Zr is relatively enriched.The soil layer, characterized by high quartz content and a low Ti/Zr ratio, likely indicates the influence of aeolian input from feldspathic dust.A binary mixing curve was constructed based on the composition of the weathered black stone protolith and aeolian dust, revealing that the weathering profiles have relatively low P/Ti ratios, while the Al/Ti ratio only shows a decreasing trend in the soil layer. This pattern suggests that P is significantly (> 50%) leached during the early stages of weathering, and the state of phosphorus in the residual soil undergoes a transition from dissolved phosphorus in the protolith to weakly adsorbed phosphorus and then to strongly adsorbed phosphorus. Under extreme weathering conditions, Al can be partially (> 20%) mobilized and lost through the percolation and leaching of acidic fluids, Al-rich clay minerals, or complexes. The degree of weathering at the surface is contingent upon the relative rates of physical erosion and chemical weathering. When erosion rates are high, a greater exposure of weakly weathered rocks occurs, which favors the weathering and leaching of P. Conversely, when erosion rates are low, a more extensive development of intensely weathered soil layers takes place, which favors the weathering and leaching of Al. Integrating the weathering trends of Late Permian basaltic mudstones in the western South China, it is posited that the weathering and erosion conditions of the ELIP are significant factors controlling the weathering-deposition enrichment of P and Al.

       

    • loading
    • Allen, V. T., 1948. Formation of Bauxite from Basaltic Rocks of Oregon. Economic Geology, 43(8): 619-626. https://doi.org/10.2113/gsecongeo.43.8.619
      Arnold, E., Merrill, J., Leinen, M., et al., 1998. The Effect of Source Area and Atmospheric Transport on Mineral Aerosol Collected over the North Pacific Ocean. Global and Planetary Change, 18(3-4): 137-159. https://doi.org/10.1016/S0921-8181(98)00013-7
      Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363: 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027
      Bai, J. H., Luo, K., Wu, C., et al., 2023. Stable Neodymium Isotopic Fractionation during Chemical Weathering. Earth and Planetary Science Letters, 617: 118260. https://doi.org/10.1016/j.epsl.2023.118260
      Barré, P., Montagnier, C., Chenu, C., et al., 2008. Clay Minerals as a Soil Potassium Reservoir: Observation and Quantification through X-Ray Diffraction. Plant and Soil, 302(1-2): 213-220. https://doi.org/10.1007/s11104-007-9471-6
      Bédard, J. H., 2006. Trace Element Partitioning in Plagioclase Feldspar. Geochimica et Cosmochimica Acta, 70(14): 3717-3742. https://doi.org/10.1016/j.gca.2006.05.003
      Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., et al., 2005. Estimation of Global River Transport of Sediments and Associated Particulate C, N, and P. Global Biogeochemical Cycles, 19(4): 2005GB002453. https://doi.org/10.1029/2005GB002453
      Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307
      Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., et al., 2023. How Temperature-Dependent Silicate Weathering Acts as Earth's Geological Thermostat. Science, 379(6630): 382-389. https://doi.org/10.1126/science.add2922
      Chadwick, O. A., Derry, L. A., Vitousek, P. M., et al., 1999. Changing Sources of Nutrients during Four Million Years of Ecosystem Development. Nature, 397(6719): 491-497. https://doi.org/10.1038/17276
      Chen, L., Liu, L. W., Zhu, X. Y., et al., 2022. Identification of the Dust and Weathering Characteristics of the Soil Weathering from Basalt in Jiangsu and Anhui Provinces. Geological Journal of China Universities, 28(6): 838-848 (in Chinese with English abstract).
      Chung, S. L., Jahn, B. M., Wu, G. Y., et al., 1998. The Emeishan Flood Basalt in SW China: A Mantle Plume Initiation Model and Its Connection with Continental Breakup and Mass Extinction at the Permian-Triassic Boundary. In: Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C., 47-58. https://doi.org/10.1002/2015GC005792
      Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
      Craig, D. C., Loughnan, F. C., 1964. Chemical and Mineralogical Transformations Accompanying the Weathering of Basic Volcanic Rocks from New South Wales. Soil Research, 2(2): 218. https://doi.org/10.1071/sr9640218
      Dessert, C., Dupré, B., Gaillardet, J., et al., 2003. Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202(3-4): 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001
      Eggleton, R. A., Foudoulis, C., Varkevisser, D., 1987. Weathering of Basalt: Changes in Rock Chemistry and Mineralogy. Clays and Clay Minerals, 35(3): 161-169. https://doi.org/10.1346/CCMN.1987.0350301
      Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
      Filippelli, G. M., 2002. The Global Phosphorus Cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. https://doi.org/10.2138/rmg.2002.48.10
      Frings, P. J., Buss, H. L., 2019. The Central Role of Weathering in the Geosciences. Elements, 15(4): 229-234. https://doi.org/10.2138/gselements.15.4.229
      Fu, W., Huang, X. R., Yang, M. L., et al., 2014. REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks: Comparative Study of Two Laterite Profiles under Different Climate Condition. Earth Science, 39(6): 716-732 (in Chinese with English abstract).
      Gardner, L. R., 1990. The Role of Rock Weathering in the Phosphorus Budget of Terrestrial Watersheds. Biogeochemistry, 11(2): 97-110. https://doi.org/10.1007/BF00002061
      Goll, D. S., Ciais, P., Amann, T., et al., 2021. Potential CO2 Removal from Enhanced Weathering by Ecosystem Responses to Powdered Rock. Nature Geoscience, 14(8): 545-549. https://doi.org/10.1038/s41561-021-00798-x
      Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon Cycle: Geomorphological Perspectives. Earth-Science Reviews, 113(1-2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005
      Hao, Q. Z., Guo, Z. T., Qiao, Y. S., et al., 2010. Geochemical Evidence for the Provenance of Middle Pleistocene Loess Deposits in Southern China. Quaternary Science Reviews, 29(23-24): 3317-3326. https://doi.org/10.1016/j.quascirev.2010.08.004
      Hartmann, J., Moosdorf, N., Lauerwald, R., et al., 2014. Global Chemical Weathering and Associated P-Release-The Role of Lithology, Temperature and Soil Properties. Chemical Geology, 363: 145-163. https://doi.org/10.1016/j.chemgeo.2013.10.025
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      Hong, H. L., Ji, K. P., Hei, H. T., et al., 2023. Clay Mineral Evolution and Formation of Intermediate Phases during Pedogenesis on Picrite Basalt Bedrock under Temperate Conditions (Yunnan, Southwestern China). CATENA, 220: 106677. https://doi.org/10.1016/j.catena.2022.106677
      Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1007/978-3-031-28089-4_15
      Huang, H., Huyskens, M. H., Yin, Q. Z., et al., 2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian-Lopingian Boundary. Geology, 50(9): 1083-1087. https://doi.org/10.1130/G50183.1
      Huang, W. H., Keller, W. D., 1972. Geochemical Mechanics for the Dissolution, Transport, and Deposition of Aluminum in the Zone of Weathering. Clays and Clay Minerals, 20(2): 69-74. https://doi.org/10.1346/ccmn.1972.0200203
      Jiang, J., Wang, Y. P., Yu, M. X., et al., 2018. Soil Organic Matter is Important for Acid Buffering and Reducing Aluminum Leaching from Acidic Forest Soils. Chemical Geology, 501: 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009
      Kurtz, A. C., Derry, L. A., Chadwick, O. A., 2001. Accretion of Asian Dust to Hawaiian Soils: Isotopic, Elemental, and Mineral Mass Balances. Geochimica et Cosmochimica Acta, 65(12): 1971-1983. https://doi.org/10.1016/S0016-7037(01)00575-0
      Lara, M. C., Buss, H. L., Pett-Ridge, J. C., 2018. The Effects of Lithology on Trace Element and REE Behavior during Tropical Weathering. Chemical Geology, 500: 88-102. https://doi.org/10.1016/j.chemgeo.2018.09.024
      Li, J. W., Ren, Y. C., Zhang, F. F., et al., 2021. Contributions of Asian Dust to Subtropical Soils of Southeast China Based on Nd Isotope. Journal of Soils and Sediments, 21(12): 3845-3855. https://doi.org/10.1007/s11368-021-03053-3
      Li, W., Johnson, C. E., 2016. Relationships among pH, Aluminum Solubility and Aluminum Complexation with Organic Matter in Acid Forest Soils of the Northeastern United States. Geoderma, 271: 234-242. https://doi.org/10.1016/j.geoderma.2016.02.030
      Liu, X. M., Hanna, H. D., Barzyk, J. G., 2023. Impact of Weathering and Mineralogy on the Chemistry of Soils from San Cristobal Island, Galapagos. In: Walsh, S. J., Mena, C. F., Stewart, J. R., et al., eds., Island Ecosystems, Social and Ecological Interactions in the Galapagos Islands. Springer International Publishing, Cham, 207-224. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Ma, J. L., Wei, G. J., Xu, Y. G., et al., 2007. Mobilization and Re-Distribution of Major and Trace Elements during Extreme Weathering of Basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13): 3223-3237. https://doi.org/10.1016/j.gca.2007.03.035
      Ma, Y. J., Huo, R. K., Xu, Z. F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94 (in Chinese with English abstract).
      Maynard, J. B., 1992. Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 100(3): 279-289. https://doi.org/10.1086/629632
      Nesbitt, H. W., Markovics, G., 1997. Weathering of Granodioritic Crust, Long-Term Storage of Elements in Weathering Profiles, and Petrogenesis of Siliciclastic Sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. https://doi.org/10.1016/S0016-7037(97)00031-8
      Nesbitt, H. W., Wilson, R. E., 1992. Recent Chemical Weathering of Basalts. American Journal of Science, 292(10): 740-777. https://doi.org/10.2475/ajs.292.10.740
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Patterson, S. H., 1971. Investigations of Ferruginous Bauxite and Other Mineral Resources on Kauai and a Reconnaissance of Ferruginous Bauxite Deposits on Maui, Hawaii (Professional Paper No. 656), Professional Paper. US Government Printing Office.
      Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., et al., 2005. Basalt Weathering in Central Siberia under Permafrost Conditions. Geochimica et Cosmochimica Acta, 69(24): 5659-5680. https://doi.org/10.1016/j.gca.2005.07.018
      Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305-308. https://doi.org/10.1038/375305a0
      Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004
      Ren, J. T., Yang, J. H., Cheng, L., et al., 2023. Weathering Carbon Storage in Emeishan Large Igneous Province: Experimental Study on Water-Rock Reaction of Basalt Powder. Acta Geologica Sinica, 97(9): 3087-3100 (in Chinese with English abstract).
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Elliott, T., Spiegelman, M., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1515/9781501509650-003
      Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126-011-0380-5
      Simonson, R. W., 1995. Airborne Dust and Its Significance to Soils. Geoderma, 65(1-2): 1-43. https://doi.org/10.1016/0016-7061(94)00031-5
      Syers, J. K., Williams, J. H., Walker, T. W., et al., 1970. Mineralogy and Forms of Inorganic Phosphorus in a Graywacke Soil-Rock Weathering Sequence. Soil Science, 110(2): 100-106. https://doi.org/10.1097/00010694-197008000-00004
      Welch, S. A., Taunton, A. E., Banfield, J. F., 2002. Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution. Geomicrobiology Journal, 19(3): 343-367. https://doi.org/10.1080/01490450290098414
      White, A. F., Brantley, S. L., 1995. Chemical Weathering Rates of Silicate Minerals: An Overview. In: White, A. F., Brantley, S. L., eds., Chemical Weathering Rates of Silicate Minerals. De Gruyter, Berlin, 1-22. https://doi.org/10.1016/j.epsl.2018.04.004
      Xiong, Y. W., Qi, H. W., Hu, R. Z., et al., 2022. Lithium Isotope Behavior under Extreme Tropical Weathering: A Case Study of Basalts from the Hainan Island, South China. Applied Geochemistry, 140: 105295. https://doi.org/10.1016/j.apgeochem.2022.105295
      Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1
      Yang, J. H., Cawood, P. A., Condon, D. J., et al., 2022. Anomalous Weathering Trends Indicate Accelerated Erosion of Tropical Basaltic Landscapes during the Permo-Triassic Warming. Earth and Planetary Science Letters, 577: 117256. https://doi.org/10.1016/j.epsl.2021.117256
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012-143
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2018. Early Wuchiapingian Cooling Linked to Emeishan Basaltic Weathering? Earth and Planetary Science Letters, 492: 102-111. _ext_link_paichu__
      Yang, J. H., Cawood, P. A., Yuan, X. P., et al., 2023. Enhanced Denudation of the Emeishan Large Igneous Province and Precipitation Forcing in the Late Permian. Journal of Geophysical Research: Solid Earth, 128(12): e2023JB027430. https://doi.org/10.1029/2023JB027430
      Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source to Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921 (in Chinese with English abstract).
      Yang, W. Z., He, C., Wang, Y., et al., 2025. Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith. Earth Science, 50(4): 1335-1352 (in Chinese with English abstract).
      Young, G. M., Nesbitt, H. W., 1998. Processes Controlling the Distribution of Ti and Al in Weathering Profiles, Siliciclastic Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 68(3): 448-455. https://doi.org/10.2110/jsr.68.448
      Zhang, X., Bajard, M., Bouchez, J., et al., 2023. Evolution of the Alpine Critical Zone since the Last Glacial Period Using Li Isotopes from Lake Sediments. Earth and Planetary Science Letters, 624: 118463. https://doi.org/10.1016/j.epsl.2023.118463
      Zhong, Y. T., He, B., Mundil, R., et al., 2014. CA-TIMS Zircon U-Pb Dating of Felsic Ignimbrite from the Binchuan Section: Implications for the Termination Age of Emeishan Large Igneous Province. Lithos, 204: 14-19. https://doi.org/10.1016/j.lithos.2014.03.005
      Zhou, L. J., Zhang, Z. W., Li, Y. J., et al., 2013. Geological and Geochemical Characteristics in the Paleo-Weathering Crust Sedimentary Type REE Deposits, Western Guizhou, China. Journal of Asian Earth Sciences, 73: 184-198. https://doi.org/10.1016/j.jseaes.2013.04.011
      陈辽, 刘连文, 朱晓雨, 等, 2022. 苏皖玄武岩土壤中风尘的识别及风化特征. 高校地质学报, 28(6): 838-848.
      付伟, 黄小荣, 杨梦力, 等, 2014. 超基性岩红土风化壳中REE地球化学: 不同气候风化剖面的对比. 地球科学, 39(6): 716-732. doi: 10.3799/dqkx.2014.067
      马英军, 霍润科, 徐志方, 等, 2004. 化学风化作用中的稀土元素行为及其影响因素. 地球科学进展, 19(1): 87-94.
      任俊童, 杨江海, 程亮, 等, 2023. 峨眉山大火成岩省的风化碳汇效应: 玄武岩粉末水‒岩反应实验研究. 地质学报, 97(9): 3087-3100.
      杨江海, 马严, 2017. 源‒汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
      杨婉贞, 何川, 王运, 等, 2025. 赣南石头坪超大型重稀土矿床的成因机制: 风化壳矿物学、地球化学约束. 地球科学, 50(4): 1335-1352. http://www.earth-science.net/article/id/042c1aed-e495-46f4-bcd1-77141bfa7106
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (242) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return