• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 7
    Jul.  2025
    Turn off MathJax
    Article Contents
    Zhou Jiao, Tian Yuhang, He Gaowen, Luo Weidong, Yang Chupeng, Tan Yufang, 2025. Characteristics of Sound Velocity Structure in Deep Water Sediments of West Philippine Sea. Earth Science, 50(7): 2899-2911. doi: 10.3799/dqkx.2025.024
    Citation: Zhou Jiao, Tian Yuhang, He Gaowen, Luo Weidong, Yang Chupeng, Tan Yufang, 2025. Characteristics of Sound Velocity Structure in Deep Water Sediments of West Philippine Sea. Earth Science, 50(7): 2899-2911. doi: 10.3799/dqkx.2025.024

    Characteristics of Sound Velocity Structure in Deep Water Sediments of West Philippine Sea

    doi: 10.3799/dqkx.2025.024
    • Received Date: 2024-09-12
    • Publish Date: 2025-07-25
    • The sound velocity of deep-sea sediments is fundamental for constructing the acoustic field of the marine environment. This article tests and analyzes parameters such as longitudinal wave velocity, wet density, porosity, and median particle size of sediment column samples obtained from the deep waters of 4 818-6 630 m in the West Philippine Sea. It elucidates the basic characteristics and vertical variations of acoustic and physical parameters of seabed sediments in the study area, explores the relationship between physical parameters and sound velocity, compares measured data with empirical equation predictions, and proposes four typical sound velocity structures of seabed sediments in the study area. The results show that the longitudinal wave velocity distribution of sediment ranges from 1 460 to 1 674 m/s, the porosity ranges from 62.07% to 69.54%, the wet density varies from 1.34 to 1.62 g/cm3, and the median particle size varies from 7.75 to 8.40 Φ. The sediment parameters in the study area vary with depth, and density has a better effect on sound velocity than porosity and median particle size. By comparing the sound velocity of the bottom seawater, the sound velocity profile within the same layer, and the sound velocity of the lower surface of the upper seabed sediment, four types of sound velocity structure models were established in the research area, involving low velocity surface-low velocity layer-sound velocity reduction type (GMI1), low velocity surface-high velocity layer-sound velocity increase type (GMI2), high velocity surface-low velocity layer-sound velocity rreduction type (GMII1), and high velocity surface-high velocity layer-sound velocity increase type (GMII2).There are significant differences in the acoustic characteristics and sound velocity gradient changes of sediments in the southern (Zone A) and northern (Zone B) regions of the Central Rift Valley. Zone A can be divided into GMII1 and GMII1-GMI1 types, while Zone B can be divided into GMI2 and GMI1-GMII2 types.

       

    • loading
    • Bae, S. H., Kim, D. C., Lee, G. S., et al., 2014. Physical and Acoustic Properties of Inner Shelf Sediments in the South Sea, Korea. Quaternary International, 344: 125-142. https://doi.org/10.1016/j.quaint.2014.03.058
      Belcourt, J., Holland, C. W., Dosso, S. E., et al., 2020. Depth-Dependent Geoacoustic Inferences with Dispersion at the New England Mud Patch via Reflection Coefficient Inversion. IEEE Journal of Oceanic Engineering, 45(1): 69-91. https://doi.org/10.1109/joe.2019.2900115
      Chu, Z., Hu, N. J., Liu, J. H., et al., 2016. Rare Earth Elements in Sediments of West Philippine Sea and Their Implications for Sediment Provenance. Marine Geology & Quaternary Geology, 36(5): 53-62 (in Chinese with English abstract).
      Deschamps, A., Lallemand, S., 2002. The West Philippine Basin: An Eocene to Early Oligocene back Arc Basin Opened between Two Opposed Subduction Zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM1-1-EPM1-24. https://doi.org/10.1029/2001JB001706
      Dong, D. D., Zhang, Z. Y., Zhang, G. X., et al., 2017. Tectonic and Sedimentary Features of the West Philippine Basin and Its Implication to the Basin Evolution—Evidence from a Seismic Transection. Oceanologia et Limnologia Sinica, 48(6): 1415-1425 (in Chinese with English abstract).
      Dong, J. Q., Sun, H., Zou, D. P., et al., 2023. Model and Prediction Relationship of Sound Velocity and Porosity of Seafloor Sediments. Journal of Sea Research, 194: 102413. https://doi.org/10.1016/j.seares.2023.102413
      Fang, Z. H., Li, P. F., Yang, Y., et al., 2022. Analysis on Sedimentary Characteristics of Shallow Strata in Deep Water Environment of Philippine Sea. Haiyang Xuebao, 44(3): 53-60 (in Chinese with English abstract).
      Ge, S. L., Shi, X. F., Yang, G., et al., 2007. Rock Magnetic Response to Climatic Changes in West Philippine Sea for the Last 780 ka: Based on Relative Paleointensity Assisted Chronology. Quaternary Sciences, 27(6): 1040-1052 (in Chinese with English abstract).
      Hamilton, E. L., 1970. Sound Velocity and Related Properties of Marine Sediments, North Pacific. Journalof Geophysical Research, 75(23): 4423-4446. https://doi.org/10.1029/jb075i023p04423
      Hamilton, E. L., 1980. Geoacoustic Modeling of the Sea Floor. The Journal of the Acoustical Society of America, 68(5): 1313-1340. https://doi.org/10.1121/1.385100
      Hou, Z. Y., Chen, Z., Wang, J. Q., et al., 2018a. Acoustic Impedance Properties of Seafloor Sediments of the Coast of Southeastern Hainan, South China Sea. Journal of Asian Earth Sciences, 154: 1-7. https://doi.org/10.1016/j.jseaes.2017.12.003
      Hou, Z. Y., Chen, Z., Wang, J. Q., et al., 2018b. Acoustic Characteristics of Seafloor Sediments in the Abyssal Areas of the South China Sea. Ocean Engineering, 156: 93-100. https://doi.org/10.1016/j.oceaneng.2018.03.013
      Jiang, F. Q., Frank, M., Li, T. G., et al., 2013. Asian Dust Input in the Western Philippine Sea: Evidence from Radiogenic Sr and Nd Isotopes. Geochemistry, Geophysics, Geosystems, 14(5): 1538-1551. https://doi.org/10.1002/ggge.20116
      Kan, G. M., Su, Y. F., Liu, B. H., et al., 2014. Properties of Acoustic Impedance of Seafloor Sediments in the Middle Area of the Southern Yellow Sea. Journal of Jilin University (Earth Science Edition), 44(1): 386-395 (in Chinese with English abstract).
      Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8
      Kim, G. Y., Kim, D. C., Yoo, D. G., et al., 2011. Physical and Geoacoustic Properties of Surface Sediments off Eastern Geoje Island, South Sea of Korea. Quaternary International, 230(1-2): 21-33. https://doi.org/10.1016/j.quaint.2009.07.028
      Kim, G. Y., Park, K. J., Lee, G. S., et al., 2019. Physical Property Characterization of Quaternary Sediments in the Vicinity of the Paleo-Seomjin River of the Continental Shelf of the South Sea, Korea. Quaternary International, 503: 153-162. https://doi.org/10.1016/j.quaint.2018.09.002
      Li, G. B., Hou, Z. Y., Wang, J. Q., et al., 2021a. Empirical Equations of P-Wave Velocity in the Shallow and Semi-Deep Sea Sediments from the South China Sea. Journal of Ocean University of China, 20(3): 532-538. https://doi.org/10.1007/s11802-021-4476-y
      Li, G. B., Wang, J. Q., Meng, X. M., et al., 2021b. Relationships between the Sound Speed Ratio and Physical Properties of Surface Sediments in the South Yellow Sea. Acta Oceanologica Sinica, 40(4): 65-73. https://doi.org/10.1007/s13131-021-1764-8
      Li, X. J., Wang, Z., Yao, Y. J., et al., 2017. The Tectonic Features and Evolution of the West Pacific Margin. Geology in China, 44(6): 1102-1114 (in Chinese with English abstract).
      Liu, B. H., Han, T. C., Kan, G. M., et al., 2013. Correlations between the In Situ Acoustic Properties and Geotechnical Parameters of Sediments in the Yellow Sea, China. Journal of Asian Earth Sciences, 77: 83-90. https://doi.org/10.1016/j.jseaes.2013.07.040
      Long, J. J., Li, G. X., 2015. Theoretical Relations between Sound Velocity and Physical-Mechanical Properties for Seafloor Sediments. Acta Acustica, 40(3): 462-468.
      Lu, B., 1994. Sound Velocity and Physical Properties of Shallow Seabed Sediments. Chinese Science Bulletin, 39(5): 435-437 (in Chinese).
      Lu, B., 1995. Model of Sound Velocity Structure in Seawater-Sediments. Marine Science Bulletin, 14(2): 42-47 (in Chinese with English abstract).
      Lu, B., Li, G. X., Sun, D. H., et al., 2006. Acoustic- Physical Properties of Seafloor Sediments from Nearshore Southeast China and Their Correlations. Journal of Tropical Oceanography, 25(2): 12-17 (in Chinese with English abstract).
      Meng, Q. S., Liu, S. B., Jia, Y. G., et al., 2018. Analysis on Acoustic Velocity Characteristics of Sediments in the Northern Slope of the South China Sea. Bulletin of Engineering Geology and the Environment, 77(3): 923-930. https://doi.org/10.1007/s10064-017-1070-z
      Okino, K., Fujioka, K., 2003. The Central Basin Spreading Center in the Philippine Sea: Structure of an Extinct Spreading Center and Implications for Marginal Basin Formation. Journal of Geophysical Research (Solid Earth), 108(B1): 2040. https://doi.org/10.1029/2001JB001095
      Orsi, T. H., Dunn, D. A., 1990. Sound Velocity and Related Physical Properties of Fine-Grained Abyssal Sediments from the Brazil Basin (South Atlantic Ocean). The Journal of the Acoustical Society of America, 88(3): 1536-1542. https://doi.org/10.1121/1.400311
      Potty, G. R., Miller, J. H., Michalopoulou, Z. H., et al., 2019. Estimation of Geoacoustic Parameters Using Machine Learning Techniques. Acoustical Society of America Journal, 146(4): 2987. https://doi.org/10.1121/1.5137342
      Qiu, B., 2001. Kuroshio and Oyashio Currents. Academic Press, New York, 1413-1425.
      Ryang, W. H., Kim, S. P., Kim, S., et al., 2013. Geoacoustic Model of the Transverse Acoustic Variability Experiment Area in the Northern East China Sea. Geosciences Journal, 17(3): 267-278. https://doi.org/10.1007/s12303-013-0039-6
      Savov, I. P., Hickey-Vargas, R., D'Antonio, M., et al., 2006. Petrology and Geochemistry of West Philippine Basin Basalts and Early Palau-Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu-Bonin-Mariana Arc. Journal of Petrology, 47(2): 277-299. https://doi.org/10.1093/petrology/egi075
      Shu, Y. T., Zheng, Y. L., Xu, D., et al., 2015. The Provenance of Clay Minerals in Core 18 from the West Philippine Basin. Journal of Marine Science, 33(4): 61-69. https://doi.org/10.3969/j.issn.1001-909x.205.04.007
      Sun, M. J., Gao, H. F., Li, X. J., et al., 2020. Sedimentary Evolution Characteristics since Late Miocene in the Huatung Basin. Haiyang Xuebao, 42(1): 154-162 (in Chinese with English abstract).
      Sun, S. X., Teng, J., 2003. Climate Character of the Philippine Sea. Marine Forecasts, 20(3): 31-39 (in Chinese with English abstract).
      Sun, Z. W., Sun, L., Li, G. B., et al., 2018. The Relationship between the Acoustic Characteristics and Physical Properties of Deep-Sea Sediments in the Philippine Sea. Marine Sciences, 42(5): 12-22 (in Chinese with English abstract).
      Tian, Y. H., Chen, Z., Hou, Z. Y., et al., 2019. Geoacoustic Provinces of the Northern South China Sea Based on Sound Speed as Predicted from Sediment Grain Sizes. Marine Geophysical Research, 40(4): 571-579. https://doi.org/10.1007/s11001-019-09387-5
      Tian, Y. H., Chen, Z., Mo, Y. X., et al., 2023. Effects of Physical Properties on the Compression Wave Speed of Seafloor Sediment in the South China Sea: Comparisons between Theoretical Models and Measured Data. Frontiers in Physics, 11: 1122617. https://doi.org/10.3389/fphy.2023.1122617
      Wan, S. M., Yu, Z. J., Clift, P. D., et al., 2012. History of Asian Eolian Input to the West Philippine Sea over the Last One Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328: 152-159. https://doi.org/10.1016/j.palaeo.2012.02.015
      Wang, C., Xu, F. J., Hu, B. Q., et al., 2020. Elemental Geochemistry of Core XT-4 Sediments from the Western Philippines Sea since 3.7 Ma and Its Paleoenvironmental Implications. Marine Sciences, 44(8): 205-214 (in Chinese with English abstract).
      Wang, J. Q., Guo, C. S., Hou, Z. Y., et al., 2014. Distributions and Vertical Variation Patterns of Sound Speed of Surface Sediments in South China Sea. Journal of Asian Earth Sciences, 89: 46-53. https://doi.org/10.1016/j.jseaes.2014.03.026
      Wang, J. Q., Li, G. B., Liu, B. H., et al., 2018. Experimental Study of the Ballast In Situ Sediment Acoustic Measurement System in South China Sea. Marine Georesources & Geotechnology, 36(5): 515-521. https://doi.org/10.1080/1064119X.2017.1348413
      Wang, W., Xu, Z. K., Feng, X. G., et al., 2020. Composition Characteristics and Provenance Implication of Modern Dust in the West Philippine Sea. Earth Science, 45(2): 559-568 (in Chinese with English abstract).
      Wilson, W. D., 1960. Equation for the Speed of Sound in Sea Water. The Journal of the Acoustical Society of America, 32(10): 1357. https://doi.org/10.1121/1.1907913
      Xu, Z. K., Li, T. G., Yu, X. K., et al., 2013. The Sources of Sediments in the West Philippine Sea in Recent 700 ka and the Records of Major Elements of the Evolution of East Asian Winter Monsoon. Chinese Science Bulletin, 58(11): 1048-1056 (in Chinese).
      Yan, Q. S., Shi, X. F., Wang, K. S., et al., 2007. Provinces and Material Provenance of Light Detritus in the Surficial Sediments from the Western Philippine Sea. Geological Review, 53(6): 765-773 (in Chinese with English abstract).
      Yang, Y. F., Liu, Z. H., Yao, J., et al., 2018. Pore Space Characterization Method of Shale Matrix Formation Based on Superposed Digital Rock and Pore-Network Model. Scientia Sinica Technologica, 48(5): 488-498. https://doi.org/10.1360/n092017-00076
      Yu, S. Q., Wang, F., Zheng, G. Y., et al., 2020. Progress and Discussions in Acoustic Properties of Marine Sediments. Journal of Harbin Engineering University, 41(10): 1571-1577 (in Chinese with English abstract).
      Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma: New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446: 45-55. https://doi.org/10.1016/j.epsl.2016.04.022
      Zhang, B., Li, G. X., Huang, J. F., 2014. The Tectonic Geomorphology of the Philippine Sea. Marine Geology & Quaternary Geology, 34(2): 79-88 (in Chinese with English abstract).
      Zhou, J., Cai, P. J., Yang, C. P., et al., 2022. Geochemical Characteristics and Genesis of Ferromanganese Nodules and Crusts from the Central Rift Seamounts Group of the West Philippine Sea. Ore Geology Reviews, 145: 104923. https://doi.org/10.1016/j.oregeorev.2022.104923
      Zhou, J. X., Li, Z. L., Zhang, X. Z., et al., 2023. Physics-Based Acoustic Inversion of Sound Velocity and Attenuation in Low-Velocity Marine Sediments. The Journal of the Acoustical Society of America, 153(35): A85. https://doi.org/10.1121/10.0018257
      Zou, D. P., Wu, Z. L., Sun, H., et al., 2022. Basic Geoacoustic Structure and Geoacoustic Model for Seafloor Sediments. Haiyang Xuebao, 44(9): 145-155 (in Chinese with English abstract).
      Zou, D. P., Yan, P., Lu, B., 2012. A Geoacoustic Model Based on Sound Speed Characteristic of Seafloor Surface Sediments of the South China Sea. Acta Oceanologica Sinica, 34(3): 80-86 (in Chinese with English abstract).
      Zou, D. P., Zeng, Z. W., Kan, G. M., et al., 2021. Influence of Environmental Conditions on the Sound Velocity Ratio of Seafloor Surficial Sediment. Journal of Ocean University of China, 20(3): 573-580. https://doi.org/10.1007/s11802-021-4628-0
      褚征, 胡宁静, 刘季花, 等, 2016. 西菲律宾海表层沉积物稀土元素地球化学特征及物源指示意义. 海洋地质与第四纪地质, 36(5): 53-62.
      董冬冬, 张正一, 张广旭, 等, 2017. 西菲律宾海盆的构造沉积特征及对海盆演化的指示——来自地球物理大断面的证据. 海洋与湖沼, 48(6): 1415-1425.
      方中华, 李攀峰, 杨源, 等, 2022. 菲律宾海深水环境下浅地层沉积特征分析. 海洋学报, 44(3): 53-60.
      葛淑兰, 石学法, 杨刚, 等, 2007. 西菲律宾海780ka以来气候变化的岩石磁学记录: 基于地磁场相对强度指示的年龄框架. 第四纪研究, 27(6): 1040-1052.
      阚光明, 苏远峰, 刘保华, 等, 2014. 南黄海中部海底沉积物声阻抗特性. 吉林大学学报(地球科学版), 44(1): 386-395.
      李学杰, 王哲, 姚永坚, 等, 2017. 西太平洋边缘构造特征及其演化. 中国地质, 44(6): 1102-1114.
      卢博, 1994. 海底浅层沉积物声速与物理性质. 科学通报, 39(5): 435-437.
      卢博, 1995. 海水‒沉积物声速结构模式. 海洋通报, 14(2): 42-47.
      卢博, 李赶先, 孙东怀, 等, 2006. 中国东南近海海底沉积物声学物理性质及其相关关系. 热带海洋学报, 25(2): 12-17.
      孙美静, 高红芳, 李学杰, 等, 2020. 花东盆地晚中新世以来沉积演化特征. 海洋学报, 42(1): 154-162.
      孙守勋, 滕军, 2003. 菲律宾海的气候特征. 海洋预报, 20(3): 31-39.
      孙志文, 孙蕾, 李官保, 等, 2018. 菲律宾海深海海底沉积物声学特性与物理性质相关关系. 海洋科学, 42(5): 12-22.
      王晨, 徐方建, 胡邦琦, 等, 2020.3.7 Ma以来西菲律宾海XT-4孔沉积物元素特征及其古环境指示意义. 海洋科学, 44(8): 205-214.
      王薇, 徐兆凯, 冯旭光, 等, 2020. 西菲律宾海现代风尘物质组成特征及其物源指示意义. 地球科学, 45(2): 559-568. doi: 10.3799/dqkx.2019.003
      徐兆凯, 李铁刚, 于心科, 等, 2013. 近700 ka来西菲律宾海沉积物来源和东亚冬季风演化的常量元素记录. 科学通报, 58(11): 1048-1056.
      鄢全树, 石学法, 王昆山, 等, 2007. 西菲律宾海盆表层沉积物中的轻碎屑分区及物质来源. 地质论评, 53(6): 765-773.
      于盛齐, 王飞, 郑广赢, 等, 2020. 海底沉积物声学特性研究进展与探讨. 哈尔滨工程大学学报, 41(10): 1571-1577.
      张斌, 李广雪, 黄继峰, 2014. 菲律宾海构造地貌特征. 海洋地质与第四纪地质, 34(2): 79-88.
      邹大鹏, 伍智林, 孙晗, 等, 2022. 海底沉积物的基本地声结构与地声模型. 海洋学报, 44(9): 145-155.
      邹大鹏, 阎贫, 卢博, 2012. 基于海底表层沉积物声速特征的南海地声模型. 海洋学报, 34(3): 80-86.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (226) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return