Citation: | Zhu Qiaoqiao, Xie Guiqing, Gao Ren, Xu Jing, Lu Lifan, 2025. Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province. Earth Science, 50(7): 2667-2688. doi: 10.3799/dqkx.2025.025 |
Audétat, A., Zhang, D. H., 2019. Abundances of S, Ga, Ge, Cd, In, Tl and 32 Other Major to Trace Elements in High-Temperature (350-700 ℃) Magmatic-Hydrothermal Fluids. Ore Geology Reviews, 109: 630-642. https://doi.org/10.1016/j.oregeorev.2019.05.017
|
Chaffee, M. A., 1976. The Zonal Distribution of Selected Elements above the Kalamazoo Porphyry Copper Deposit, San Manuel District, Pinal County, Arizona. Journal of Geochemical Exploration, 5(1-2): 145-165. https://doi.org/10.1016/0375-6742(76)90042-x
|
Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese).
|
Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
|
Du, H. F., Zheng, J. P., Tian, L. R., et al., 2020. Microfabrics, In-Situ Trace Element and Sulfur Isotope Compositions of Pyrite from the Jinjiwo Copper Deposit in Chengmenshan Orefield, Northern Yangtze Block: Syngenetic Stratabound Mineralization and Hydrothermal Remobilization. Ore Geology Reviews, 127: 103830. https://doi.org/10.1016/j.oregeorev.2020.103830
|
Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type-A Meta-Analysis. Ore Geology Reviews, 76: 52-78. https://doi.org/10.1016/j.oregeorev.2015.12.017
|
Gadd, M. G., Lawley, C. J., Corriveau, L., et al., 2023. Public Geoscience Solutions for Diversifying Canada's Critical Mineral Production. In: Smelror, M., Hanghøj, K., Schiellerup, H. eds., The Green Stone Age: Exploration and Exploitation of Minerals for Green Technologies. Geological Society, London, Special Publications, 526: 25-50. https://doi.org/10.1144/SP526-2021-190
|
Gao, R., Xie, G. Q., Feng, D. S., et al., 2023. Characteristics and Genesis of Newly Discovered W Mineralization in Wushan Cu Deposit, Jiangxi: Constraints from Mineralography, In-Situ U-Pb Chronology and Element Geochemistry of Scheelite. Mineral Deposits, 42(6): 1139-1158 (in Chinese with English abstract).
|
Gao, R., Xie, G. Q., Zha, Z. Q., et al., 2022. Mineralization of Associated Dispersed Elements in the Chengmenshan Copper Deposit of Jiangxi Province and Its Geological Significance. Geology and Exploration, 58(3): 514-531 (in Chinese with English abstract).
|
George, L. L., Cook, N. J., Ciobanu, C. L., 2017. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 7(2): 17. https://doi.org/10.3390/min7020017
|
Grundler, P. V., Brugger, J., Etschmann, B. E., et al., 2013. Speciation of Aqueous Tellurium(IV) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009
|
Gu, T., Liu, Y. P., Li, C. Y., 2000. Super-Richening and Coexistence of Disperse Elements. Bulletin of Mineralogy, Petrology and Geochemistry, 19(1): 60-63 (in Chinese with English abstract).
|
Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2021. Study of Occurrence States and Precipitation Mechanism of Tellurium in Chengmenshan Porphyry-Skarn Deposit from the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 37(9): 2723-2742 (in Chinese with English abstract).
|
Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry-Skarn System: A Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520
|
Halley, S., Dilles, J. H., Tosdal, R. M., 2015. Footprints: Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits. SEG Discovery, (100): 1-17. https://doi.org/10.5382/SEGnews.2015-100.fea
|
Han, Y. X., 2020. Geology and Mineralization of the Cu-Au Skarn System in Southeast Hubei Province and Northwest Jiangxi Province, Eastern China: Examples from the Fengshan and Chengmenshan Areas in Jiurui Ore District (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Hurtig, N. C., Gysi, A. P., Monecke, T., et al., 2024. Tellurium Transport and Enrichment in Volcanogenic Massive Sulfide Deposits: Numerical Simulations of Vent Fluids and Comparison to Modern Sea-Floor Sulfides. Economic Geology, 119(4): 829-851. https://doi.org/10.5382/econgeo.5067
|
Jiang, Y. G., Zhou, J. X., Luo, K., et al., 2023. The Differential Enrichment Mechanism of Thallium in the Huodehong MVT Deposit, NE Yunnan Province, China: Evidence from EBSD, LA-ICPMS and TEM. Acta Petrologica Sinica, 39(10): 3002-3014 (in Chinese with English abstract).
|
Keith, M., Smith, D. J., Jenkin, G. R. T., et al., 2018. A Review of Te and Se Systematics in Hydrothermal Pyrite from Precious Metal Deposits: Insights into Ore-Forming Processes. Ore Geology Reviews, 96: 269-282. https://doi.org/10.1016/j.oregeorev.2017.07.023
|
Kong, F. B., Ye, S. Z., Gao, R., et al., 2020. Characteristics of Associated Gold and Silver for Copper-Sulfur Orebody in Tielukan Copper Deposit of Jiangxi Province. China Molybdenum Industry, 44(6): 14-19 (in Chinese with English abstract).
|
Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018
|
Liu, C. M., Wu, C. L., Xu, W. S., 1998. The Exploration Geochemical Model for Major Types of Copper Deposits in China. Geophysical and Geochemical Exploration, 22(3): 161-165 (in Chinese with English abstract).
|
Liu, J. J., Wang, D. Z., Zhai, D. G., et al., 2021. Super-Enrichment Mechanisms of Precious Metals by Low-Melting Point Copper-Philic Element(LMCE) Melts. Acta Petrologica Sinica, 37(9): 2629-2656 (in Chinese with English abstract).
|
Liu, J. J., Zhai, D. G., Wang, D. Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract).
|
Luo, J. A., Yang, G. C., 2007. Geological Characteristics of Chengmenshan Copper Deposit, Jiangxi and Its Ore Genesis. Mineral Resources and Geology, 21(3): 284-288 (in Chinese with English abstract).
|
Ma, Z. D., Gong, M., Gong, P., et al., 2010. Mineral Deposit Model of the Skarn Deposit. In: Shi, J. F., Tang, J. R., Zhou, P., et al., eds., World Mineral Deposit Model and Exploration. Geological Publishing House, Beijing, 160-171 (in Chinese).
|
Makovicky, E., 2018. Modular Crystal Chemistry of Thallium Sulfosalts. Minerals, 8(11): 478. https://doi.org/10.3390/min8110478
|
Mao, J. W., Wang, Y. T., Lehmann, B., et al., 2006. Molybdenite Re-Os and Albite 40Ar/39Ar Dating of Cu-Au-Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3-4): 307-324. https://doi.org/10.1016/j.oregeorev.2005.11.001
|
Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Strata Bound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010
|
Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
|
Meng, Y. M., Hu, R. Z., Huang, X. W., et al., 2017. Germanium in Magnetite: A Preliminary Review. Acta Geologica Sinica (English Edition), 91(2): 711-726. https://doi.org/10.1111/1755-6724.13127
|
Meng, Y. M., Zhang, X., Huang, X. W., et al., 2024. A Review of the Zn-Pb Deposits in Sichuan-Yunnan- Guizhou Metallogenic Region with Emphasis on the Enrichment Mechanism of Ge, Ga, and In. Ore Geology Reviews, 164: 105853. https://doi.org/10.1016/j.oregeorev.2023.105853
|
Murowchick, J. B., Barnes, H. L., 1986. Marcasite Precipitation from Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 50(12): 2615-2629. https://doi.org/10.1016/0016-7037(86)90214-0
|
Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169-1368(99)00022-0
|
Seward, T. M., Henderson, C. M. B., Charnock, J. M., 2000. Indium(III) Chloride Complexing and Solvation in Hydrothermal Solutions to 350 ℃: An EXAFS Study. Chemical Geology, 167(1-2): 117-127. https://doi.org/10.1016/S0009-2541(99)00204-1
|
Shao, Y., 1997. Geochemical Rock Survey (Dispersion Halo) and Hydrothermal Deposit Exploration. Geological Publishing House, Beijing (in Chinese).
|
Shen, W., 2007. Fractal Summation Methods and Its Application in Geochemical Element Data for Population Limits. Computing Techniques for Geophysical and Geochemical Exploration, 29(2): 134-137 (in Chinese with English abstract).
|
Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Fe-Cu Ore Deposits in Eastern Hubei Province. Metallurgical Industry Press, Beijing (in Chinese).
|
Škácha, P., Sejkora, J., Plášil, J., 2017. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic). Minerals, 7(6): 91. https://doi.org/10.3390/min7060091
|
Tao, Y., Hu, R. Z., Tang, Y. Y., et al., 2019. Types of Dispersed Elements Bearing Ore-Deposits and Their Enrichment Regularity in Southwest China. Acta Geologica Sinica, 93(6): 1210-1230 (in Chinese with English abstract).
|
Tu, G. C., 2000. A Preliminary Research on the Metallogenic of Te. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 211-214 (in Chinese).
|
Tu, G. C., Gao, Z. M., Hu, R. Z., et al., 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Geological Publishing House, Beijing (in Chinese).
|
Voudouris, P., 2006. A Comparative Mineralogical Study of Te-Rich Magmatic-Hydrothermal Systems in Northeastern Greece. Mineralogy and Petrology, 87(3): 241-275. https://doi.org/10.1007/s00710-006-0131-y
|
Voudouris, P., Repstock, A., Spry, P. G., et al., 2022. Physicochemical Constraints on Indium-, Tin-, Germanium-, Gallium-, Gold-, and Tellurium-bearing Mineralizations in the Pefka and St Philippos Polymetallic Vein- and Breccia-Type Deposits, Greece. Ore Geology Reviews, 140: 104348. https://doi.org/10.1016/j.oregeorev.2021.104348
|
Wang, D. H., Sun, Y., Dai, H. Z., et al., 2019. Characteristics and Exploitation of Rare Earth, Rare Metal and Rare-Scattered Element Minerals in China. Strategic Study of Chinese Academy of Engineering, 21(1): 119-127 (in Chinese with English abstract).
|
Wang, H., Fu, H. P., Li, Y. S., et al., 2023. In-Situ LA-ICP-MS U-Pb Dating of Garnet and Zircon from Tongjiangling Copper (Tungsten) Deposit in Jiangxi Province and Its Geological Significance. Acta Geologica Sinica, 97(7): 2281-2292 (in Chinese with English abstract).
|
Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
|
Wen, H. J., Zhou, Z. B., Zhu, C. W., et al., 2019. Critical Scientific Issues of Super-Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract).
|
Wen, H. J., Zhu, C. W., Du, S. J., et al., 2020. Gallium (Ga), Germanium (Ge), Thallium (Tl) and Cadmium (Cd) Resources in China. Chinese Science Bulletin, 65(33): 3688-3699 (in Chinese).
|
Wu, L. S., Zou, X. Q., 1997. Re Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381 (in Chinese with English abstract).
|
Xie, G. Q., Han, Y. X., Li, X. H., 2019. A Preliminary Study of Characteristics of Dispersed Metal-Bearing Deposits in Middle-Lower Yangtze River Metallogenic Belt. Mineral Deposits, 38(4): 729-738 (in Chinese with English abstract).
|
Xie, G. Q., Mao, J. W., Richards, J. P., et al., 2019. Distal Au Deposits Associated with Cu-Au Skarn Mineralization in the Fengshan Area, Eastern China. Economic Geology, 114(1): 127-142. https://doi.org/10.5382/econgeo.2019.4623
|
Xie, G. Q., Mao, J. W., Zhu, Q. Q., et al., 2015. Geochemical Constraints on Cu-Fe and Fe Skarn Deposits in the Edong District, Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 64: 425-444. https://doi.org/10.1016/j.oregeorev.2014.08.005
|
Xie, G. Q., Wu, X. L., Li, X. H., et al., 2024. A Primary Study on the Current Status and Mineralization Regularities of Associated Te and Se Resources in Porphyry-Skarn Cu Polymetallic Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 35-48 (in Chinese with English abstract).
|
Xu, J., Cook, N. J., Ciobanu, C. L., et al., 2021. Indium Distribution in Sphalerite from Sulfide-Oxide-Silicate Skarn Assemblages: A Case Study of the Dulong Zn- Sn-In Deposit, Southwest China. Mineralium Deposita, 56(2): 307-324. https://doi.org/10.1007/s00126- 020-00972-y doi: 10.1007/s00126-020-00972-y
|
Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010
|
Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310 (in Chinese with English abstract).
|
Yang, M. G., Wang, F. N., Zeng, Y., et al., 2004. Metallogenic Geology of Metals in Northern Jiangxi Province. China Land Press, Beijing (in Chinese).
|
Yang, Z. M., Hou, Z. Q., Zhou, L. M., et al., 2020. Critical Elements in Porphyry Copper Deposits of China. Chinese Science Bulletin, 65(33): 3653-3664 (in Chinese).
|
Ye, S. Z., Gao, R., Wu, H. X., et al., 2019. New Progress and Next Prospecting Direction of Chengmenshan Copper Deposit in Jiangxi. Mineral Exploration, 10(1): 94-101 (in Chinese with English abstract).
|
Zhai, Y. S., Xiong, Y. L., Yao, S. Z., et al., 1996. Metallogeny of Copper and Iron Deposits in the Eastern Yangtse Craton, East-Central China. Ore Geology Reviews, 11(4): 229-248. https://doi.org/10.1016/0169-1368(96)00003-0
|
Zhang, Q., Liu, Y. P., Ye, L., et al., 2008. Study on Specialization of Dispersed Element Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 247-253 (in Chinese with English abstract).
|
Zhang, Q., Zhu, X. Q., Gao, Z. M., et al., 2005. A Review of Enrichment and Mineralization of the Dispersed Elements in China. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4): 342-349 (in Chinese with English abstract).
|
Zhao, H. T., Shao, Y. J., Zhang, Y., et al., 2023. Big Data Mining on Trace Element Geochemistry of Sphalerite. Journal of Geochemical Exploration, 252: 107254. https://doi.org/10.1016/j.gexplo.2023.107254
|
Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical Metal Resources in the Middle-Lower Yangtze River Valley Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese).
|
Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract).
|
Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. A Preliminary Investigation and Evaluation of the Thallium Environmental Impacts of the Unmined Xiangquan Thallium-Only Deposit in Hexian, China. Environmental Geology, 54(1): 131-145. https://doi.org/10.1007/s00254-007-0800-0
|
Zhu, Q. Q., Cook, N. J., Xie, G. Q., et al., 2022. Textural and Geochemical Analysis of Celestine and Sulfides Constrain Sr-(Pb-Zn) Mineralization in the Shizilishan Deposit, Eastern China. Ore Geology Reviews, 144: 104814. https://doi.org/10.1016/j.oregeorev.2022.104814
|
Zhu, Q. Q., Xie, G. Q., Lu, L. F., et al., 2024. Trace Element of Epidote from the Tonglushan Cu-Fe-Au Deposit, Eastern China: Implications for Exploration Indicator for Skarn Mineralization. Ore Geology Reviews, 174: 106298. https://doi.org/10.1016/j.oregeorev.2024.106298
|
常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铜铁成矿带. 北京: 地质出版社.
|
高任, 谢桂青, 查志强, 等, 2022. 江西城门山铜矿床伴生稀散金属矿化特征及其地质意义. 地质与勘探, 58(3): 514-531.
|
高任, 谢桂青, 冯道水, 等, 2023. 江西武山铜矿区新发现钨矿(化)体特征和其成因——来自矿相学、白钨矿原位U-Pb年代学和元素地球化学的约束. 矿床地质, 42(6): 1139-1158.
|
谷团, 刘玉平, 李朝阳, 2000. 分散元素的超常富集与共生. 矿物岩石地球化学通报, 19(1): 60-63.
|
国显正, 周涛发, 汪方跃, 等, 2021. 长江中下游成矿带城门山斑岩-矽卡岩型铜金矿床碲元素赋存状态及沉淀机制初步研究. 岩石学报, 37(9): 2723-2742.
|
韩颖霄, 2020. 鄂东南-赣西北矽卡岩铜金成矿作用研究——以九瑞丰山矿田和城门山矿区为例(博士学位论文). 北京: 中国地质大学.
|
姜永果, 周家喜, 罗开, 等, 2023. 滇东北火德红MVT矿床中铊的差异性富集机制: 来自EBSD、LA-ICPMS和TEM证据. 岩石学报, 39(10): 3002-3014.
|
孔凡斌, 叶少贞, 高任, 等, 2020. 江西铁路坎铜矿床铜硫矿体伴生金银特征. 中国钼业, 44(6): 14-19.
|
刘崇民, 吴承烈, 徐外生, 1998. 中国主要类型铜矿勘查地球化学模型. 物探与化探, 22(3): 161-165.
|
刘家军, 王大钊, 翟德高, 等, 2021. 低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志. 岩石学报, 37(9): 2629-2656.
|
刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98.
|
罗建安, 杨国才, 2007. 江西城门山铜矿地质特征及矿床成因. 矿产与地质, 21(3): 284-288.
|
马振东, 龚敏, 龚鹏, 等, 2010. 矽卡岩型铜矿找矿模型. 见: 施俊法, 唐金荣, 周平, 等, 主编, 世界找矿模型与矿产勘查. 北京: 地质出版社, 160-171.
|
毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698.
|
邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿. 北京: 地质出版社.
|
申维, 2007. 分形求和法及其在地球化学数据分组中的应用. 物探化探计算技术, 29(2): 134-137.
|
舒全安, 陈培良, 程建荣, 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社.
|
陶琰, 胡瑞忠, 唐永永, 等, 2019. 西南地区稀散元素伴生成矿的主要类型及伴生富集规律. 地质学报, 93(6): 1210-1230.
|
涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214.
|
涂光炽, 高振敏, 胡瑞忠, 等, 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社.
|
王登红, 孙艳, 代鸿章, 等, 2019. 我国"三稀矿产" 的资源特征及开发利用研究. 中国工程科学, 21(1): 119-127.
|
王海, 付海平, 李永胜, 等, 2023. 江西通江岭铜(钨)矿床石榴子石和锆石LA-ICP-MS原位U-Pb定年及其地质意义. 地质学报, 97(7): 2281-2292.
|
温汉捷, 周正兵, 朱传威, 等, 2019. 稀散金属超常富集的主要科学问题. 岩石学报, 35(11): 3271-3291.
|
温汉捷, 朱传威, 杜胜江, 等, 2020. 中国镓锗铊镉资源. 科学通报, 65(33): 3688-3699.
|
吴良士, 邹晓秋, 1997. 江西城门山铜矿铼-锇同位素年龄研究. 矿床地质, 16(4): 376-381.
|
谢桂青, 韩颖霄, 李新昊, 2019. 长江中下游成矿带含稀散金属矿床特征初探. 矿床地质, 38(4): 729-738.
|
谢桂青, 吴晓林, 李新昊, 等, 2024. 长江中下游斑岩-矽卡岩铜多金属矿床共伴生碲、硒资源现状和成矿规律浅析. 矿物岩石地球化学通报, 43(1): 35-48.
|
徐耀明, 蒋少涌, 朱志勇, 等, 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291-4310.
|
杨明桂, 王发宁, 曾勇, 等, 2004. 江西北部金属成矿地质. 北京: 中国大地出版社.
|
杨志明, 侯增谦, 周利敏, 等, 2020. 中国斑岩铜矿床中的主要关键矿产. 科学通报, 65(33): 3653-3664.
|
叶少贞, 高任, 吴火星, 等, 2019. 江西城门山铜矿找矿新成果及下步找矿方向. 矿产勘查, 10(1): 94-101.
|
张乾, 刘玉平, 叶霖, 等, 2008. 分散元素成矿专属性探讨. 矿物岩石地球化学通报, 27(3): 247-253.
|
张乾, 朱笑青, 高振敏, 等, 2005. 中国分散元素富集与成矿研究新进展. 矿物岩石地球化学通报, 24(4): 342-349.
|
周涛发, 范裕, 陈静, 等, 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677.
|
周涛发, 范裕, 王世伟, 等, 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372.
|