• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 7
    Jul.  2025
    Turn off MathJax
    Article Contents
    Zhu Qiaoqiao, Xie Guiqing, Gao Ren, Xu Jing, Lu Lifan, 2025. Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province. Earth Science, 50(7): 2667-2688. doi: 10.3799/dqkx.2025.025
    Citation: Zhu Qiaoqiao, Xie Guiqing, Gao Ren, Xu Jing, Lu Lifan, 2025. Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province. Earth Science, 50(7): 2667-2688. doi: 10.3799/dqkx.2025.025

    Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province

    doi: 10.3799/dqkx.2025.025
    • Received Date: 2024-10-28
    • Publish Date: 2025-07-25
    • Porphyry-skarn Cu deposits are frequently characterized by high contents of dispersed elements, which exhibit significantly diversified enrichment between them. However, the regularity of the diversified enrichment remains insufficiently understood. In this study, the primary ore minerals present in the Chengmenshan deposit were investigated, using the optical microscope and scanning electron microscopy. Additionally, correlation analysis, cluster analysis, and fractal analysis were employed to explore the relationships between the dispersed elements (Te, Se, Ga, Ge, Cd, In, and Tl) and Bi contents in the drill cores. The results reveal that Te is predominantly hosted by independent minerals, with only a minor fraction incorporated into sulfides. In contrast, other dispersed elements are incorporated by at least two types of sulfide. The distribution patterns of the dispersed elements at Chengmenshan exhibit multifractal patterns, except for Tl, which follows a simple fractal distribution due to its complex occurrence. The enrichment pattern of these dispersed elements at Chengmenshan is characterized by a sequential separation and spatial dislocation. The pattern is likely influenced by metallogenic factors such as temperature, pH, fS2, and fO2, along with the distinctive geochemical properties of the dispersed elements. This research demonstrates that an understanding of the diversified enrichment regularity of these dispersed elements could be instrumental in identifying independent deposits of these elements. Furthermore, a primary halo distribution model for the dispersed elements in the Chengmenshan deposit has been developed, which may serve as a valuable reference for studying the genesis of associated dispersed element deposits and for the prospecting and exploration of deeply buried targets.

       

    • loading
    • Audétat, A., Zhang, D. H., 2019. Abundances of S, Ga, Ge, Cd, In, Tl and 32 Other Major to Trace Elements in High-Temperature (350-700 ℃) Magmatic-Hydrothermal Fluids. Ore Geology Reviews, 109: 630-642. https://doi.org/10.1016/j.oregeorev.2019.05.017
      Chaffee, M. A., 1976. The Zonal Distribution of Selected Elements above the Kalamazoo Porphyry Copper Deposit, San Manuel District, Pinal County, Arizona. Journal of Geochemical Exploration, 5(1-2): 145-165. https://doi.org/10.1016/0375-6742(76)90042-x
      Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese).
      Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
      Du, H. F., Zheng, J. P., Tian, L. R., et al., 2020. Microfabrics, In-Situ Trace Element and Sulfur Isotope Compositions of Pyrite from the Jinjiwo Copper Deposit in Chengmenshan Orefield, Northern Yangtze Block: Syngenetic Stratabound Mineralization and Hydrothermal Remobilization. Ore Geology Reviews, 127: 103830. https://doi.org/10.1016/j.oregeorev.2020.103830
      Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type-A Meta-Analysis. Ore Geology Reviews, 76: 52-78. https://doi.org/10.1016/j.oregeorev.2015.12.017
      Gadd, M. G., Lawley, C. J., Corriveau, L., et al., 2023. Public Geoscience Solutions for Diversifying Canada's Critical Mineral Production. In: Smelror, M., Hanghøj, K., Schiellerup, H. eds., The Green Stone Age: Exploration and Exploitation of Minerals for Green Technologies. Geological Society, London, Special Publications, 526: 25-50. https://doi.org/10.1144/SP526-2021-190
      Gao, R., Xie, G. Q., Feng, D. S., et al., 2023. Characteristics and Genesis of Newly Discovered W Mineralization in Wushan Cu Deposit, Jiangxi: Constraints from Mineralography, In-Situ U-Pb Chronology and Element Geochemistry of Scheelite. Mineral Deposits, 42(6): 1139-1158 (in Chinese with English abstract).
      Gao, R., Xie, G. Q., Zha, Z. Q., et al., 2022. Mineralization of Associated Dispersed Elements in the Chengmenshan Copper Deposit of Jiangxi Province and Its Geological Significance. Geology and Exploration, 58(3): 514-531 (in Chinese with English abstract).
      George, L. L., Cook, N. J., Ciobanu, C. L., 2017. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 7(2): 17. https://doi.org/10.3390/min7020017
      Grundler, P. V., Brugger, J., Etschmann, B. E., et al., 2013. Speciation of Aqueous Tellurium(IV) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009
      Gu, T., Liu, Y. P., Li, C. Y., 2000. Super-Richening and Coexistence of Disperse Elements. Bulletin of Mineralogy, Petrology and Geochemistry, 19(1): 60-63 (in Chinese with English abstract).
      Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2021. Study of Occurrence States and Precipitation Mechanism of Tellurium in Chengmenshan Porphyry-Skarn Deposit from the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 37(9): 2723-2742 (in Chinese with English abstract).
      Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry-Skarn System: A Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520
      Halley, S., Dilles, J. H., Tosdal, R. M., 2015. Footprints: Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits. SEG Discovery, (100): 1-17. https://doi.org/10.5382/SEGnews.2015-100.fea
      Han, Y. X., 2020. Geology and Mineralization of the Cu-Au Skarn System in Southeast Hubei Province and Northwest Jiangxi Province, Eastern China: Examples from the Fengshan and Chengmenshan Areas in Jiurui Ore District (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Hurtig, N. C., Gysi, A. P., Monecke, T., et al., 2024. Tellurium Transport and Enrichment in Volcanogenic Massive Sulfide Deposits: Numerical Simulations of Vent Fluids and Comparison to Modern Sea-Floor Sulfides. Economic Geology, 119(4): 829-851. https://doi.org/10.5382/econgeo.5067
      Jiang, Y. G., Zhou, J. X., Luo, K., et al., 2023. The Differential Enrichment Mechanism of Thallium in the Huodehong MVT Deposit, NE Yunnan Province, China: Evidence from EBSD, LA-ICPMS and TEM. Acta Petrologica Sinica, 39(10): 3002-3014 (in Chinese with English abstract).
      Keith, M., Smith, D. J., Jenkin, G. R. T., et al., 2018. A Review of Te and Se Systematics in Hydrothermal Pyrite from Precious Metal Deposits: Insights into Ore-Forming Processes. Ore Geology Reviews, 96: 269-282. https://doi.org/10.1016/j.oregeorev.2017.07.023
      Kong, F. B., Ye, S. Z., Gao, R., et al., 2020. Characteristics of Associated Gold and Silver for Copper-Sulfur Orebody in Tielukan Copper Deposit of Jiangxi Province. China Molybdenum Industry, 44(6): 14-19 (in Chinese with English abstract).
      Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018
      Liu, C. M., Wu, C. L., Xu, W. S., 1998. The Exploration Geochemical Model for Major Types of Copper Deposits in China. Geophysical and Geochemical Exploration, 22(3): 161-165 (in Chinese with English abstract).
      Liu, J. J., Wang, D. Z., Zhai, D. G., et al., 2021. Super-Enrichment Mechanisms of Precious Metals by Low-Melting Point Copper-Philic Element(LMCE) Melts. Acta Petrologica Sinica, 37(9): 2629-2656 (in Chinese with English abstract).
      Liu, J. J., Zhai, D. G., Wang, D. Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract).
      Luo, J. A., Yang, G. C., 2007. Geological Characteristics of Chengmenshan Copper Deposit, Jiangxi and Its Ore Genesis. Mineral Resources and Geology, 21(3): 284-288 (in Chinese with English abstract).
      Ma, Z. D., Gong, M., Gong, P., et al., 2010. Mineral Deposit Model of the Skarn Deposit. In: Shi, J. F., Tang, J. R., Zhou, P., et al., eds., World Mineral Deposit Model and Exploration. Geological Publishing House, Beijing, 160-171 (in Chinese).
      Makovicky, E., 2018. Modular Crystal Chemistry of Thallium Sulfosalts. Minerals, 8(11): 478. https://doi.org/10.3390/min8110478
      Mao, J. W., Wang, Y. T., Lehmann, B., et al., 2006. Molybdenite Re-Os and Albite 40Ar/39Ar Dating of Cu-Au-Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3-4): 307-324. https://doi.org/10.1016/j.oregeorev.2005.11.001
      Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Strata Bound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
      Meng, Y. M., Hu, R. Z., Huang, X. W., et al., 2017. Germanium in Magnetite: A Preliminary Review. Acta Geologica Sinica (English Edition), 91(2): 711-726. https://doi.org/10.1111/1755-6724.13127
      Meng, Y. M., Zhang, X., Huang, X. W., et al., 2024. A Review of the Zn-Pb Deposits in Sichuan-Yunnan- Guizhou Metallogenic Region with Emphasis on the Enrichment Mechanism of Ge, Ga, and In. Ore Geology Reviews, 164: 105853. https://doi.org/10.1016/j.oregeorev.2023.105853
      Murowchick, J. B., Barnes, H. L., 1986. Marcasite Precipitation from Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 50(12): 2615-2629. https://doi.org/10.1016/0016-7037(86)90214-0
      Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169-1368(99)00022-0
      Seward, T. M., Henderson, C. M. B., Charnock, J. M., 2000. Indium(III) Chloride Complexing and Solvation in Hydrothermal Solutions to 350 ℃: An EXAFS Study. Chemical Geology, 167(1-2): 117-127. https://doi.org/10.1016/S0009-2541(99)00204-1
      Shao, Y., 1997. Geochemical Rock Survey (Dispersion Halo) and Hydrothermal Deposit Exploration. Geological Publishing House, Beijing (in Chinese).
      Shen, W., 2007. Fractal Summation Methods and Its Application in Geochemical Element Data for Population Limits. Computing Techniques for Geophysical and Geochemical Exploration, 29(2): 134-137 (in Chinese with English abstract).
      Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Fe-Cu Ore Deposits in Eastern Hubei Province. Metallurgical Industry Press, Beijing (in Chinese).
      Škácha, P., Sejkora, J., Plášil, J., 2017. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic). Minerals, 7(6): 91. https://doi.org/10.3390/min7060091
      Tao, Y., Hu, R. Z., Tang, Y. Y., et al., 2019. Types of Dispersed Elements Bearing Ore-Deposits and Their Enrichment Regularity in Southwest China. Acta Geologica Sinica, 93(6): 1210-1230 (in Chinese with English abstract).
      Tu, G. C., 2000. A Preliminary Research on the Metallogenic of Te. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 211-214 (in Chinese).
      Tu, G. C., Gao, Z. M., Hu, R. Z., et al., 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Geological Publishing House, Beijing (in Chinese).
      Voudouris, P., 2006. A Comparative Mineralogical Study of Te-Rich Magmatic-Hydrothermal Systems in Northeastern Greece. Mineralogy and Petrology, 87(3): 241-275. https://doi.org/10.1007/s00710-006-0131-y
      Voudouris, P., Repstock, A., Spry, P. G., et al., 2022. Physicochemical Constraints on Indium-, Tin-, Germanium-, Gallium-, Gold-, and Tellurium-bearing Mineralizations in the Pefka and St Philippos Polymetallic Vein- and Breccia-Type Deposits, Greece. Ore Geology Reviews, 140: 104348. https://doi.org/10.1016/j.oregeorev.2021.104348
      Wang, D. H., Sun, Y., Dai, H. Z., et al., 2019. Characteristics and Exploitation of Rare Earth, Rare Metal and Rare-Scattered Element Minerals in China. Strategic Study of Chinese Academy of Engineering, 21(1): 119-127 (in Chinese with English abstract).
      Wang, H., Fu, H. P., Li, Y. S., et al., 2023. In-Situ LA-ICP-MS U-Pb Dating of Garnet and Zircon from Tongjiangling Copper (Tungsten) Deposit in Jiangxi Province and Its Geological Significance. Acta Geologica Sinica, 97(7): 2281-2292 (in Chinese with English abstract).
      Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      Wen, H. J., Zhou, Z. B., Zhu, C. W., et al., 2019. Critical Scientific Issues of Super-Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract).
      Wen, H. J., Zhu, C. W., Du, S. J., et al., 2020. Gallium (Ga), Germanium (Ge), Thallium (Tl) and Cadmium (Cd) Resources in China. Chinese Science Bulletin, 65(33): 3688-3699 (in Chinese).
      Wu, L. S., Zou, X. Q., 1997. Re Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381 (in Chinese with English abstract).
      Xie, G. Q., Han, Y. X., Li, X. H., 2019. A Preliminary Study of Characteristics of Dispersed Metal-Bearing Deposits in Middle-Lower Yangtze River Metallogenic Belt. Mineral Deposits, 38(4): 729-738 (in Chinese with English abstract).
      Xie, G. Q., Mao, J. W., Richards, J. P., et al., 2019. Distal Au Deposits Associated with Cu-Au Skarn Mineralization in the Fengshan Area, Eastern China. Economic Geology, 114(1): 127-142. https://doi.org/10.5382/econgeo.2019.4623
      Xie, G. Q., Mao, J. W., Zhu, Q. Q., et al., 2015. Geochemical Constraints on Cu-Fe and Fe Skarn Deposits in the Edong District, Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 64: 425-444. https://doi.org/10.1016/j.oregeorev.2014.08.005
      Xie, G. Q., Wu, X. L., Li, X. H., et al., 2024. A Primary Study on the Current Status and Mineralization Regularities of Associated Te and Se Resources in Porphyry-Skarn Cu Polymetallic Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 35-48 (in Chinese with English abstract).
      Xu, J., Cook, N. J., Ciobanu, C. L., et al., 2021. Indium Distribution in Sphalerite from Sulfide-Oxide-Silicate Skarn Assemblages: A Case Study of the Dulong Zn- Sn-In Deposit, Southwest China. Mineralium Deposita, 56(2): 307-324. https://doi.org/10.1007/s00126- 020-00972-y doi: 10.1007/s00126-020-00972-y
      Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010
      Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310 (in Chinese with English abstract).
      Yang, M. G., Wang, F. N., Zeng, Y., et al., 2004. Metallogenic Geology of Metals in Northern Jiangxi Province. China Land Press, Beijing (in Chinese).
      Yang, Z. M., Hou, Z. Q., Zhou, L. M., et al., 2020. Critical Elements in Porphyry Copper Deposits of China. Chinese Science Bulletin, 65(33): 3653-3664 (in Chinese).
      Ye, S. Z., Gao, R., Wu, H. X., et al., 2019. New Progress and Next Prospecting Direction of Chengmenshan Copper Deposit in Jiangxi. Mineral Exploration, 10(1): 94-101 (in Chinese with English abstract).
      Zhai, Y. S., Xiong, Y. L., Yao, S. Z., et al., 1996. Metallogeny of Copper and Iron Deposits in the Eastern Yangtse Craton, East-Central China. Ore Geology Reviews, 11(4): 229-248. https://doi.org/10.1016/0169-1368(96)00003-0
      Zhang, Q., Liu, Y. P., Ye, L., et al., 2008. Study on Specialization of Dispersed Element Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 247-253 (in Chinese with English abstract).
      Zhang, Q., Zhu, X. Q., Gao, Z. M., et al., 2005. A Review of Enrichment and Mineralization of the Dispersed Elements in China. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4): 342-349 (in Chinese with English abstract).
      Zhao, H. T., Shao, Y. J., Zhang, Y., et al., 2023. Big Data Mining on Trace Element Geochemistry of Sphalerite. Journal of Geochemical Exploration, 252: 107254. https://doi.org/10.1016/j.gexplo.2023.107254
      Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical Metal Resources in the Middle-Lower Yangtze River Valley Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese).
      Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract).
      Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. A Preliminary Investigation and Evaluation of the Thallium Environmental Impacts of the Unmined Xiangquan Thallium-Only Deposit in Hexian, China. Environmental Geology, 54(1): 131-145. https://doi.org/10.1007/s00254-007-0800-0
      Zhu, Q. Q., Cook, N. J., Xie, G. Q., et al., 2022. Textural and Geochemical Analysis of Celestine and Sulfides Constrain Sr-(Pb-Zn) Mineralization in the Shizilishan Deposit, Eastern China. Ore Geology Reviews, 144: 104814. https://doi.org/10.1016/j.oregeorev.2022.104814
      Zhu, Q. Q., Xie, G. Q., Lu, L. F., et al., 2024. Trace Element of Epidote from the Tonglushan Cu-Fe-Au Deposit, Eastern China: Implications for Exploration Indicator for Skarn Mineralization. Ore Geology Reviews, 174: 106298. https://doi.org/10.1016/j.oregeorev.2024.106298
      常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铜铁成矿带. 北京: 地质出版社.
      高任, 谢桂青, 查志强, 等, 2022. 江西城门山铜矿床伴生稀散金属矿化特征及其地质意义. 地质与勘探, 58(3): 514-531.
      高任, 谢桂青, 冯道水, 等, 2023. 江西武山铜矿区新发现钨矿(化)体特征和其成因——来自矿相学、白钨矿原位U-Pb年代学和元素地球化学的约束. 矿床地质, 42(6): 1139-1158.
      谷团, 刘玉平, 李朝阳, 2000. 分散元素的超常富集与共生. 矿物岩石地球化学通报, 19(1): 60-63.
      国显正, 周涛发, 汪方跃, 等, 2021. 长江中下游成矿带城门山斑岩-矽卡岩型铜金矿床碲元素赋存状态及沉淀机制初步研究. 岩石学报, 37(9): 2723-2742.
      韩颖霄, 2020. 鄂东南-赣西北矽卡岩铜金成矿作用研究——以九瑞丰山矿田和城门山矿区为例(博士学位论文). 北京: 中国地质大学.
      姜永果, 周家喜, 罗开, 等, 2023. 滇东北火德红MVT矿床中铊的差异性富集机制: 来自EBSD、LA-ICPMS和TEM证据. 岩石学报, 39(10): 3002-3014.
      孔凡斌, 叶少贞, 高任, 等, 2020. 江西铁路坎铜矿床铜硫矿体伴生金银特征. 中国钼业, 44(6): 14-19.
      刘崇民, 吴承烈, 徐外生, 1998. 中国主要类型铜矿勘查地球化学模型. 物探与化探, 22(3): 161-165.
      刘家军, 王大钊, 翟德高, 等, 2021. 低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志. 岩石学报, 37(9): 2629-2656.
      刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98.
      罗建安, 杨国才, 2007. 江西城门山铜矿地质特征及矿床成因. 矿产与地质, 21(3): 284-288.
      马振东, 龚敏, 龚鹏, 等, 2010. 矽卡岩型铜矿找矿模型. 见: 施俊法, 唐金荣, 周平, 等, 主编, 世界找矿模型与矿产勘查. 北京: 地质出版社, 160-171.
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698.
      邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿. 北京: 地质出版社.
      申维, 2007. 分形求和法及其在地球化学数据分组中的应用. 物探化探计算技术, 29(2): 134-137.
      舒全安, 陈培良, 程建荣, 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社.
      陶琰, 胡瑞忠, 唐永永, 等, 2019. 西南地区稀散元素伴生成矿的主要类型及伴生富集规律. 地质学报, 93(6): 1210-1230.
      涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214.
      涂光炽, 高振敏, 胡瑞忠, 等, 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社.
      王登红, 孙艳, 代鸿章, 等, 2019. 我国"三稀矿产" 的资源特征及开发利用研究. 中国工程科学, 21(1): 119-127.
      王海, 付海平, 李永胜, 等, 2023. 江西通江岭铜(钨)矿床石榴子石和锆石LA-ICP-MS原位U-Pb定年及其地质意义. 地质学报, 97(7): 2281-2292.
      温汉捷, 周正兵, 朱传威, 等, 2019. 稀散金属超常富集的主要科学问题. 岩石学报, 35(11): 3271-3291.
      温汉捷, 朱传威, 杜胜江, 等, 2020. 中国镓锗铊镉资源. 科学通报, 65(33): 3688-3699.
      吴良士, 邹晓秋, 1997. 江西城门山铜矿铼-锇同位素年龄研究. 矿床地质, 16(4): 376-381.
      谢桂青, 韩颖霄, 李新昊, 2019. 长江中下游成矿带含稀散金属矿床特征初探. 矿床地质, 38(4): 729-738.
      谢桂青, 吴晓林, 李新昊, 等, 2024. 长江中下游斑岩-矽卡岩铜多金属矿床共伴生碲、硒资源现状和成矿规律浅析. 矿物岩石地球化学通报, 43(1): 35-48.
      徐耀明, 蒋少涌, 朱志勇, 等, 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291-4310.
      杨明桂, 王发宁, 曾勇, 等, 2004. 江西北部金属成矿地质. 北京: 中国大地出版社.
      杨志明, 侯增谦, 周利敏, 等, 2020. 中国斑岩铜矿床中的主要关键矿产. 科学通报, 65(33): 3653-3664.
      叶少贞, 高任, 吴火星, 等, 2019. 江西城门山铜矿找矿新成果及下步找矿方向. 矿产勘查, 10(1): 94-101.
      张乾, 刘玉平, 叶霖, 等, 2008. 分散元素成矿专属性探讨. 矿物岩石地球化学通报, 27(3): 247-253.
      张乾, 朱笑青, 高振敏, 等, 2005. 中国分散元素富集与成矿研究新进展. 矿物岩石地球化学通报, 24(4): 342-349.
      周涛发, 范裕, 陈静, 等, 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677.
      周涛发, 范裕, 王世伟, 等, 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (274) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return