Citation: | Wu Fei, Zhou Laitong, Feng Liang, Nan Xiaoyun, 2025. Research Progress and Applications of High⁃Temperature Barium Isotope Geochemistry. Earth Science, 50(7): 2461-2481. doi: 10.3799/dqkx.2025.042 |
Significant advances have been made in the geochemical study of barium (Ba) isotopes over the past decades, demonstrating considerable potential for their application in tracing crust-mantle interactions, crust recycling in subduction zones, granite differentiation, magmatic-hydrothermal fluids and mineralization processes, as well as marine productivity. This paper systematically reviews the current progress in Ba isotope studies related to high-temperature geological processes. Recent research has preliminarily established the range of Ba isotope variations in different geological reservoirs, revealing distinct Ba isotopic compositions between crustal materials of various origins (such as sediments and altered oceanic crust) and the depleted mantle. Theoretical calculations, experimental studies, and observations from geological samples indicate that Ba isotope fractionation among Ba-bearing minerals is limited under high-temperature equilibrium conditions. However, processes such as dehydration of hydrous minerals during metamorphism, exsolution of magmatic-hydrothermal fluids, and fluid-rock interactions can lead to significant Ba isotope fractionation. Finally, this paper presents research progress and case studies on the use of Ba isotopes to investigate crustal-material recycling, granite evolution, and mineralization, highlighting the application potential of Ba isotope in tracing high-temperature geological processes.
Albarède, F., Beard, B., 2004. Analytical Methods for Non-Traditional Isotopes. Reviews in Mineralogy and Geochemistry, 55(1): 113-152. https://doi.org/10.2138/gsrmg.55.1.113
|
An, Y. J., Li, X., Zhang, Z. F., 2020. Barium Isotopic Compositions in Thirty-Four Geological Reference Materials Analysed by MC-ICP-MS. Geostandards and Geoanalytical Research, 44(1): 183-199. https://doi.org/10.1111/ggr.12299
|
Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565-1582. https://doi.org/10.1093/petrology/egh019
|
Bai, R. X., Jackson, M. G., Huang, F., et al., 2022. Barium Isotopes in Ocean Island Basalts as Tracers of Mantle Processes. Geochimica et Cosmochimica Acta, 336: 436-447. https://doi.org/10.1016/j.gca.2022.08.023
|
Bédard, J. H., 2005. Partitioning Coefficients between Olivine and Silicate Melts. Lithos, 83(3-4): 394-419. https://doi.org/10.1016/j.lithos.2005.03.011
|
Bigeleisen, J., Mayer, M. G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. The Journal of Chemical Physics, 15(5): 261-267. https://doi.org/10.1063/1.1746492
|
Bonechi, B., Perinelli, C., Gaeta, M., et al., 2021. High Pressure Trace Element Partitioning between Clinopyroxene and Alkali Basaltic Melts. Geochimica et Cosmochimica Acta, 305: 282-305. https://doi.org/10.1016/j.gca.2021.04.023
|
Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995a. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54-56. https://doi.org/10.1038/378054a0
|
Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al., 1995b. Experimental Determination of Trace-Element Partitioning between Pargasite and a Synthetic Hydrous Andesitic Melt. Earth and Planetary Science Letters, 135(1-4): 1-11. https://doi.org/10.1016/0012-821X(95)00139-4
|
Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al., 1995c. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900 ℃ and 2.0 GPa: Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochimica et Cosmochimica Acta, 59(16): 3331-3350. https://doi.org/10.1016/0016-7037(95)00215-L
|
Bridgestock, L., Hsieh, Y. T., Porcelli, D., et al., 2018. Controls on the Barium Isotope Compositions of Marine Sediments. Earth and Planetary Science Letters, 481: 101-110. https://doi.org/10.1016/j.epsl.2017.10.019
|
Chen, A. X., Chen, Y. X., Gu, X. F., et al., 2023. Barium Isotope Behavior during Interaction between Serpentinite-Derived Fluids and Metamorphic Rocks in the Continental Subduction Zone. Geochimica et Cosmochimica Acta, 353: 61-75. https://doi.org/10.1016/j.gca.2023.05.016
|
Cheng, Y. S., Du, Y. F., Chen, K. Y., et al., 2022. Rapid Two-Column Separation Method for Determining Barium Isotopic Compositions Using MC-ICP-MS. Atomic Spectroscopy, 43(3): 236-245. https://doi.org/10.46770/as.2022.105
|
Davies, J. H., Stevenson, D. J., 1992. Physical Model of Source Region of Subduction Zone Volcanics. Journal of Geophysical Research: Solid Earth, 97(B2): 2037-2070. https://doi.org/10.1029/91JB02571
|
Deng, G. X., Jiang, D. S., Li, G., et al., 2024. Barium Isotope Evidence for a Magmatic Fluid-Dominated Petrogenesis of LCT-Type Pegmatites. Geochemical Perspectives Letters, 31: 14-20. https://doi.org/10.7185/geochemlet.2426
|
Deng, G. X., Jiang, D. S., Zhang, R. Q., et al., 2022. Barium Isotopes Reveal the Role of Deep Magmatic Fluids in Magmatic-Hydrothermal Evolution and Tin Enrichment in Granites. Earth and Planetary Science Letters, 594: 117724. https://doi.org/10.1016/j.epsl.2022.117724
|
Deng, G. X., Kang, J. T., Nan, X. Y., et al., 2021. Barium Isotope Evidence for Crystal-Melt Separation in Granitic Magma Reservoirs. Geochimica et Cosmochimica Acta, 292: 115-129. https://doi.org/10.1016/j.gca.2020.09.027
|
Dunn, T., Sen, C., 1994. Mineral/Matrix Partition Coefficients for Orthopyroxene, Plagioclase, and Olivine in Basaltic to Andesitic Systems: A Combined Analytical and Experimental Study. Geochimica et Cosmochimica Acta, 58(2): 717-733. https://doi.org/10.1016/0016-7037(94)90501-0
|
Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. https://doi.org/10.1029/92PA00181
|
Eagle, M., Paytan, A., Arrigo, K. R., et al., 2003. A Comparison between Excess Barium and Barite as Indicators of Carbon Export. Paleoceanography, 18(1): 1-13. https://doi.org/10.1029/2002PA000793
|
Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991-15019. https://doi.org/10.1029/97JB00788
|
Eugster, O., Tera, F., Wasserburg, G. J., 1969. Isotopic Analyses of Barium in Meteorites and in Terrestrial Samples. Journal of Geophysical Research, 74(15): 3897-3908. https://doi.org/10.1029/jb074i015p03897
|
Ewart, A., Griffin, W. L., 1994. Application of Proton- Microprobe Data to Trace-Element Partitioning in Volcanic Rocks. Chemical Geology, 117(1-4): 251-284. https://doi.org/10.1016/0009-2541(94)90131-7
|
Fang, L. R., Moynier, F., Huang, F., et al., 2022. Barium Stable Isotopic Composition of Chondrites and Its Implication for the Earth. Chemical Geology, 604: 120923. https://doi.org/10.1016/j.chemgeo.2022.120923
|
Giletti, B. J., Shanahan, T. M., 1997. Alkali Diffusion in Plagioclase Feldspar. Chemical Geology, 139(1-4): 3-20. https://doi.org/10.1016/S0009-2541(97)00026-0
|
Gou, L. F., Deng, L., 2019. Determination of Barium Isotopic Ratios in River Water on the Multiple Collector Inductively Coupled Plasma Mass Spectrometer. Analytical Sciences, 35(5): 521-527. https://doi.org/10.2116/analsci.18P329
|
Gu, X. F., Guo, S., Yu, H. M., et al., 2021. Behavior of Barium Isotopes during High-Pressure Metamorphism and Fluid Evolution. Earth and Planetary Science Letters, 575: 117176. https://doi.org/10.1016/j.epsl.2021.117176
|
Guo, H. H., Li, W. Y., Nan, X. Y., et al., 2020. Experimental Evidence for Light Ba Isotopes Favouring Aqueous Fluids over Silicate Melts. Geochemical Perspectives Letters, 16: 6-11. https://doi.org/10.7185/geochemlet.2036
|
Hao, L. L., Nan, X. Y., Kerr, A. C., et al., 2022. Mg-Ba-Sr-Nd Isotopic Evidence for a Mélange Origin of Early Paleozoic Arc Magmatism. Earth and Planetary Science Letters, 577: 117263. https://doi.org/10.1016/j.epsl.2021.117263
|
Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/BF00310881
|
Hoefs, J., 2021. Stable Isotope Geochemistry. Springer, Berlin. https://doi.org/10.1007/978-3-030-77692-3
|
Hoernle, K., Hauff, F., Kokfelt, T. F., et al., 2011. On- and Off-Axis Chemical Heterogeneities along the South Atlantic Mid-Ocean-Ridge (5-11°S): Shallow or Deep Recycling of Ocean Crust and/or Intraplate Volcanism? Earth and Planetary Science Letters, 306(1-2): 86-97. https://doi.org/10.1016/j.epsl.2011.03.032
|
Horner, T. J., Kinsley, C. W., Nielsen, S. G., 2015. Barium-Isotopic Fractionation in Seawater Mediated by Barite Cycling and Oceanic Circulation. Earth and Planetary Science Letters, 430: 511-522. https://doi.org/10.1016/j.epsl.2015.07.027
|
Huang, F., Bai, R. X., Deng, G. X., et al., 2021. Barium Isotope Evidence for the Role of Magmatic Fluids in the Origin of Himalayan Leucogranites. Science Bulletin, 66(22): 2329-2336. https://doi.org/10.1016/j.scib.2021.07.020
|
Huang, F., Tian, S. Y., 2018. Recent Advances of Metal Stable Isotope Geochernistry Studies. Bulletin of Mineralogy, Petrology and Geochemistry, 37(5): 793-811 (in Chinese with English abstract).
|
Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005JB004066
|
Imeokparia, E. G., 1981. Ba/Rb and Rb/Sr Ratios as Indicators of Magmatic Fractionation, Postmagmatic Alteration and Mineralization-Afu Younger Granite Complex, Northern Nigeria. Geochemical Journal, 15(4): 209-219. https://doi.org/10.2343/geochemj.15.209
|
Jiang, D. S., Erdmann, S., Deng, G. X., et al., 2022. Barium Isotope Evidence for the Generation of Peralkaline Granites from a Fluid-Metasomatized Crustal Source. Chemical Geology, 614: 121197. https://doi.org/10.1016/j.chemgeo.2022.121197
|
Jiang, D. S., Xu, X. S., Erdmann, S., et al., 2024. Ba-Mg Isotopic Evidence from an OIB-Type Diabase for a Big Mantle Wedge beneath East Asia in the Early Cretaceous. Chemical Geology, 646: 121917. https://doi.org/10.1016/j.chemgeo.2023.121917
|
Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0
|
Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
|
Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2014. Measurement of Small Ion Beams by Thermal Ionisation Mass Spectrometry Using New 1013 Ohm Resistors. Analytica Chimica Acta, 819: 49-55. https://doi.org/10.1016/j.aca.2014.02.007
|
Laubier, M., Grove, T. L., Langmuir, C. H., 2014. Trace Element Mineral/Melt Partitioning for Basaltic and Basaltic Andesitic Melts: An Experimental and Laser ICP-MS Study with Application to the Oxidation State of Mantle Source Regions. Earth and Planetary Science Letters, 392: 265-278. https://doi.org/10.1016/j.epsl.2014.01.053
|
Le Pichon, X., Francheteau, J., Bonnin, J., 2013 Plate Tectonics. Elsevier Scientific Publishing Company, Amsterdam.
|
Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
|
Li, Q., Zhao, K. D., Zhu, Z. Y., et al., 2024a. Barium Isotope Variations in Highly-Fractionated Granites Linked to Tin Mineralization: New Insights into Tin Recycling and Enrichment in the Continental Crust. Chemical Geology, 646: 121914. https://doi.org/10.1016/j.chemgeo.2023.121914
|
Li, X. L., Chen, Y. X., Demény, A., et al., 2024b. Barium Isotope Variation during Fluid-Rock Interaction at Forearc Depths: Evidence from High-Pressure Fluid-Metasomatized Rocks in the Eastern Alps. Lithos, 480-481: 107665. https://doi.org/10.1016/j.lithos.2024.107665
|
Li, W. Y., Yu, H. M., Xu, J., et al., 2020. Barium Isotopic Composition of the Mantle: Constraints from Carbonatites. Geochimica et Cosmochimica Acta, 278: 235-243. https://doi.org/10.1016/j.gca.2019.06.041
|
Li, Y. L., Zhang, H. F., Guo, J. H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: A Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. Chemical Geology, 450: 165-182. https://doi.org/10.1016/j.chemgeo.2016.12.029
|
Lin, Y. B., Wei, H. Z., Jiang, S. Y., et al., 2020. Accurate Determination of Barium Isotopic Compositions in Sequentially Leached Phases from Carbonates by Double Spike-Thermal Ionization Mass Spectrometry (DS-TIMS). Analytical Chemistry, 92(3): 2417-2424. https://doi.org/10.1021/acs.analchem.9b03137
|
Liu, J. W., Tian, S. H., Geng, X. L., et al., 2024. Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region. Earth Science, 49(11): 3930-3945 (in Chinese with English abstract).
|
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
|
Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2019. Mineralogical Evidence for Fractionation Processes in the Himalayan Leucogranites of the Ramba Dome, Southern Tibet. Lithos, 340-341: 71-86. https://doi.org/10.1016/j.lithos.2019.05.004
|
Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492
|
Long, P. E., Luth, W. C., 1986. Origin of K-Feldspar Megacrysts in Granitic Rocks; Implications of a Partitioning Model for Barium. American Mineralogist, 71(3-4): 367-375.
|
Lu, X. B., Bai, J. H., Ye, F., et al., 2024. Progress and Prospect of Rare Earth Elements Stable Isotope Analysis Techniques. Journal of Earth Science, 35(6): 2129-2132. https://doi.org/10.1007/s12583-024-2022-8
|
Mallmann, G., O'Neill, H. S. C., 2009. The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with Some Other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794. https://doi.org/10.1093/petrology/egp053
|
Marschall, H. R., Schumacher, J. C., 2012. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nature Geoscience, 5(12): 862-867. https://doi.org/10.1038/ngeo1634
|
McBirney, A. R., Nicolas, A., 1997. The Skaergaard Layered Series. Part Ⅱ. Magmatic Flow and Dynamic Layering. Journal of Petrology, 38(5): 569-580. https://doi.org/10.1093/petroj/38.5.569
|
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
|
Miyazaki, T., Kimura, J. I., Chang, Q., 2014. Analysis of Stable Isotope Ratios of Ba by Double-Spike Standard-Sample Bracketing Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 29(3): 483-490. https://doi.org/10.1039/C3JA50311A
|
Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
|
Morris, J. D., Ryan, J. G., 2003. Subduction Zone Processes and Implications for Changing Composition of the Upper and Lower Mantle. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 451-470.
|
Moynier, F., Pringle, E. A., Bouvier, A., et al., 2015. Barium Stable Isotope Composition of the Earth, Meteorites, and Calcium-Aluminum-Rich Inclusions. Chemical Geology, 413: 1-6. https://doi.org/10.1016/j.chemgeo.2015.08.002
|
Nan, X. Y., Wu, F., Yu, H. M., et al., 2023. Barium Isotope Compositions of Altered Oceanic Crust from the IODP Site 1256 at the East Pacific Rise. Chemical Geology, 641: 121778. https://doi.org/10.1016/j.chemgeo.2023.121778
|
Nan, X. Y., Wu, F., Zhang, Z. F., et al., 2015. High- Precision Barium Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11): 2307-2315. https://doi.org/10.1039/C5JA00166H
|
Nan, X. Y., Yu, H. M., Kang, J. T., et al., 2022. Re- Visiting Barium Isotope Compositions of Mid-Ocean Ridge Basalts and the Implications. JUSTC, 52(3): 1-8. https://doi.org/10.52396/justc-2021-0276
|
Nan, X. Y., Yu, H. M., Rudnick, R. L., et al., 2018. Barium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 233: 33-49. https://doi.org/10.1016/j.gca.2018.05.004
|
Nash, W. P., Crecraft, H. R., 1985. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
|
Nie, C., Kang, J. T., Jiang, Y., et al., 2024. Effect of Terrestrial Weathering on Stable Sr and Ba Isotope Compositions of Eucrites. Geochimica et Cosmochimica Acta, 372: 28-41. https://doi.org/10.1016/j.gca.2024.03.009
|
Nielsen, S. G., Horner, T. J., Pryer, H. V., et al., 2018. Barium Isotope Evidence for Pervasive Sediment Recycling in the Upper Mantle. Science Advances, 4(7): eaas8675. https://doi.org/10.1126/sciadv.aas8675
|
Nielsen, S. G., Shu, Y. C., Auro, M., et al., 2020. Barium Isotope Systematics of Subduction Zones. Geochimica et Cosmochimica Acta, 275: 1-18. https://doi.org/10.1016/j.gca.2020.02.006
|
Nier, A. O., 1938. The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Physical Review, 54(4): 275-278. https://doi.org/10.1103/PhysRev.54.275
|
Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
|
Ranen, M. C., Jacobsen, S. B., 2006. Barium Isotopes in Chondritic Meteorites: Implications for Planetary Reservoir Models. Science, 314(5800): 809-812. https://doi.org/10.1126/science.1132595
|
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-51.
|
Salters, V. J. M., Longhi, J. E., Bizimis, M., 2002. Near Mantle Solidus Trace Element Partitioning at Pressures up to 3.4 GPa. Geochemistry, Geophysics, Geosystems, 3(7): 1-23. https://doi.org/10.1029/2001GC000148
|
Scaillet, B., France-Lanord, C., Le Fort, P., 1990. Badrinath-Gangotri Plutons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163-188. https://doi.org/10.1016/0377-0273(90)90017-A
|
Schauble, E. A., 2011. First-Principles Estimates of Equilibrium Magnesium Isotope Fractionation in Silicate, Oxide, Carbonate and Hexaaquamagnesium (2+) Crystals. Geochimica et Cosmochimica Acta, 75(3): 844-869. https://doi.org/10.1016/j.gca.2010.09.044
|
Schönbächler, M., Fehr, M. A., 2014. Basics of Ion Exchange Chromatography for Selected Geological Applications. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 123-146.
|
Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/S0567739476001551
|
Shu, Y. C., Zhang, G. L., Tian, L. L., et al., 2022. Constraints of Barium Isotopes on Recycling of Ancient Oceanic Crust in the Mantle of the South China Sea. Journal of Volcanology and Geothermal Research, 429: 107608. https://doi.org/10.1016/j.jvolgeores.2022.107608
|
Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R., et al., 2007. Alkali Feldspar Megacryst Growth: Geochemical Modelling. Mineralogy and Petrology, 89(1): 1-29. https://doi.org/10.1007/s00710-006-0135-7
|
Strelow, F. W. E., 1960. An Ion Exchange Selectivity Scale of Cations Based on Equilibrium Distribution Coefficients. Analytical Chemistry, 32(9): 1185-1188. https://doi.org/10.1021/ac60165a042
|
Strelow, F. W. E., Rethemeyer, R., Bothma, C. J. C., 1965. Ion Exchange Selectivity Scales for Cations in Nitric Acid and Sulfuric Acid Media with a Sulfonated Polystyrene Resin. Analytical Chemistry, 37(1): 106-111.
|
Takahashi, T., Hirahara, Y., Miyazaki, T., et al., 2009. Precise Determination of Sr Isotope Ratios in Igneous Rock Samples and Application to Micro-Analysis of Plagioclase Phenocrysts. JAMSTEC Report of Research and Development, 2009: 59-64. https://doi.org/10.5918/jamstecr.2009.59
|
Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., 1986. Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas: Evidence from High-Pressure Experiments and Natural Rocks. Journal of Volcanology and Geothermal Research, 29(1-4): 293-309. https://doi.org/10.1016/0377-0273(86)90049-1
|
Tian, L. L., Gong, Y. Z., Wei, W., et al., 2020. Rapid Determination of Ba Isotope Compositions for Barites Using a H2O-Extraction Method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(8): 1566-1573. https://doi.org/10.1039/D0JA00078G
|
Turner, S. J., Langmuir, C. H., 2024. An Alternative to the Igneous Crust Fluid + Sediment Melt Paradigm for Arc Lava Geochemistry. Science Advances, 10(24): eadg6482. https://doi.org/10.1126/sciadv.adg6482
|
Turner, S., Hawkesworth, C., Rogers, N., et al., 1997. 238U-230Th Disequilibria, Magma Petrogenesis, and Flux Rates beneath the Depleted Tonga-Kermadec Island Arc. Geochimica et Cosmochimica Acta, 61(22): 4855-4884. https://doi.org/10.1016/S0016-7037(97)00281-0
|
Urey, H. C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562-581. https://doi.org/10.1039/JR9470000562
|
van Zuilen, K., Nägler, T. F., Bullen, T. D., 2016. Barium Isotopic Compositions of Geological Reference Materials. Geostandards and Geoanalytical Research, 40(4): 543-558. https://doi.org/10.1111/ggr.12122
|
von Allmen, K., Böttcher, M. E., Samankassou, E., et al., 2010. Barium Isotope Fractionation in the Global Barium Cycle: First Evidence from Barium Minerals and Precipitation Experiments. Chemical Geology, 277(1-2): 70-77. https://doi.org/10.1016/j.chemgeo.2010.07.011
|
Wang, J. L., Wei, H. Z., Palmer, M. R., et al., 2023. Barium Isotope Fractionation during Granitic Magmatism and Potential of δ138/134Ba for Distinguishing Magmatic-Hydrothermal Transition in Granitic Magma Systems. Geochimica et Cosmochimica Acta, 360: 138-150. https://doi.org/10.1016/j.gca.2023.09.013
|
Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China Earth Sciences, 60(9): 1655-1663. https://doi.org/10.1007/s11430-017-9075-8
|
Wang, W. Z., Wu, Z. Q., Huang, F., 2021. Equilibrium Barium Isotope Fractionation between Minerals and Aqueous Solution from First-Principles Calculations. Geochimica et Cosmochimica Acta, 292: 64-77. https://doi.org/10.1016/j.gca.2020.09.021
|
Wei, G. J., Huang, F., Ma, J. L., et al., 2022. Progress of Non-Traditional Stable Isotope Geochemistry of the Past Decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 1-44 (in Chinese with English abstract).
|
Wei, G. Y., Ling, H. F., Shields, G. A., et al., 2021. Revisiting Stepwise Ocean Oxygenation with Authigenic Barium Enrichments in Marine Mudrocks. Geology, 49(9): 1059-1063. https://doi.org/10.1130/G48825.1
|
White, W. M., 2015. Probing the Earth's Deep Interior through Geochemistry. Geochemical Perspectives, 95-251. https://doi.org/10.7185/geochempersp.4.2
|
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
|
Wu, F., Turner, S., Schaefer, B. F., 2021. Ba Isotope Analysis Using 1013 Ω Amplifiers. Thermo Fisher Scientific Inc., Waltham.
|
Wu, F., Turner, S., Hoernle, K., et al., 2023. Barium Isotope Composition of Depleted MORB Mantle Constrained by Basalts from the South Mid-Atlantic Ridge (5-11°S) with Implication for Recycled Components in the Convecting Upper Mantle. Geochimica et Cosmochimica Acta, 340: 85-98. https://doi.org/10.1016/j.gca.2022.11.013
|
Wu, F., Turner, S., Schaefer, B. F., 2020. Mélange versus Fluid and Melt Enrichment of Subarc Mantle: A Novel Test Using Barium Isotopes in the Tonga-Kermadec Arc. Geology, 48(11): 1053-1057. https://doi.org/10.1130/G47549.1
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese).
|
Xiao, Z. C., Wang, W. Z., Gu, X. F., et al., 2023. First-Principles Calculations of Equilibrium Barium Isotope Fractionation among Silicate Minerals. Geochimica et Cosmochimica Acta, 360: 163-174. https://doi.org/10.1016/j.gca.2023.09.017
|
Xu, J., Li, W. Y., Gu, X. F., et al., 2023. Barium Isotope Fractionation during Slab Dehydration: Records from an Eclogite-Quartz Vein System in Dabie Orogen. Geochimica et Cosmochimica Acta, 343: 272-285. https://doi.org/10.1016/j.gca.2022.11.030
|
Xu, Z., Zheng, Y. F., Zhao, Z. F., 2022. Barium Isotope Fractionation during Dehydration Melting of the Subducting Oceanic Crust: Geochemical Evidence from OIB-like Continental Basalts. Chemical Geology, 594: 120751. https://doi.org/10.1016/j.chemgeo.2022.120751
|
Ye, X. Y., Li, B., Tan, D. B., et al., 2024. Lithium Isotope Analytical Methods and Implications for Rare- Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 35(6): 1878-1894. https://doi.org/10.1007/s12583-023-1972-1
|
Yi, D., Zhao, J., Li, C. H., et al., 2022. Crustal Contaminations Responsible for the Petrogenesis of Basalts from the Emeishan Large Igneous Province, NW China: New Evidence from Ba Isotopes. Journal of Earth Science, 33(1): 109-120. https://doi.org/10.1007/s12583-021-1513-0
|
Young, E. D., Manning, C. E., Schauble, E. A., et al., 2015. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications. Chemical Geology, 395: 176-195. https://doi.org/10.1016/j.chemgeo.2014.12.013
|
Yu, H. M., Nan, X. Y., Wu, F., et al., 2022. Barium Isotope Evidence of a Fluid-Metasomatized Mantle Component in the Source of Azores OIB. Chemical Geology, 610: 121097. https://doi.org/10.1016/j.chemgeo.2022.121097
|
Yu, Y., Siebert, C., Fietzke, J., et al., 2020. The Impact of MC-ICP-MS Plasma Conditions on the Accuracy and Precision of Stable Isotope Measurements Evaluated for Barium Isotopes. Chemical Geology, 549: 119697. https://doi.org/10.1016/j.chemgeo.2020.119697
|
Zeng, G., Chen, L. H., Hofmann, A. W., et al., 2021. Nephelinites in Eastern China Originating from the Mantle Transition Zone. Chemical Geology, 576: 120276. https://doi.org/10.1016/j.chemgeo.2021.120276
|
Zeng, Z., Li, X. H., Liu, Y., et al., 2019. High-Precision Barium Isotope Measurements of Carbonates by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2): 291-300. https://doi.org/10.1111/ggr.12256
|
Zhang, Y. X., Shu, Y. C., Turner, S., et al., 2024. Deciphering Contribution of Recycled Altered Oceanic Crust to Arc Magmas Using Ba-Sr-Nd Isotopes. Journal of Geophysical Research: Solid Earth, 129(3): e2023JB028407. https://doi.org/10.1029/2023JB028407
|
Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240-243: 16-33. https://doi.org/10.1016/j.lithos.2015.10.018
|
Zhao, Y. P., Tang, Y. J., Xu, J., et al., 2021. Barium Isotope Evidence for Recycled Crustal Materials in the Mantle Source of Continental Basalts. Lithos, 390-391: 106111. https://doi.org/10.1016/j.lithos.2021.106111
|
Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28 (in Chinese with English abstract).
|
Zhu, R. Z., Fowler, M., Huang, F., et al., 2024. Barium-Mg Isotopes in High Ba-Sr Granites Record a Melt-Metasomatized Mantle Source and Crustal Growth. Geochimica et Cosmochimica Acta, 379: 124-133. https://doi.org/10.1016/j.gca.2024.07.004
|
Zhu, X. K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract).
|
黄方, 田笙谕, 2018. 若干金属稳定同位素体系的研究进展: 以中国科大实验室为例. 矿物岩石地球化学通报, 37(5): 793-811.
|
李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
|
刘嘉文, 田世洪, 耿显雷, 等, 2024. 俯冲沉积物交代造山带岩石圈地幔: 来自三江地区煌斑岩钾同位素的约束. 地球科学, 49(11): 3930-3945. doi: 10.3799/dqkx.2024.100
|
韦刚健, 黄方, 马金龙, 等, 2022. 近十年我国非传统稳定同位素地球化学研究进展. 矿物岩石地球化学通报, 41(1): 1-44
|
吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
|
郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
|
朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688.
|