Citation: | Xu Hong, Yan Zhuoyu, Fu Heping, Wang Xiuqi, Su Dapeng, 2025. Characterization of Mg Isotopes in Dolomites and Advances in Island-Basin Studies. Earth Science, 50(8): 3225-3240. doi: 10.3799/dqkx.2025.047 |
Azmy, K., Lavoie, D., Wang, Z. R., et al., 2013. Magnesium-Isotope and REE Compositions of Lower Ordovician Carbonates from Eastern Laurentia: Implications for the Origin of Dolomites and Limestones. Chemical Geology, 356: 64-75. https://doi.org/10.1016/j.chemgeo.2013.07.015
|
Albarede, F., Beard, B., 2004. Analytical Methods for Non-Traditional Isotopes. Reviews in Mineralogy and Geochemistry, 55(1): 113-152. https://doi.org/10.2138/gsrmg.55.1.113
|
Burns, S. J., McKenzie, J. A., Vasconcelos, C., 2000. Dolomite Formation and Biogeochemical Cycles in the Phanerozoic. Sedimentology, 47(s1): 49-61. https://doi.org/10.1046/j.1365-3091.2000.00004.x
|
Brenot, A., Cloquet, C., Vigier, N., et al., 2008. Magnesium Isotope Systematics of the Lithologically Varied Moselle River Basin, France. Geochimica et Cosmochimica Acta, 72(20): 5070-5089. https://doi.org/10.1016/j.gca.2008.07.027
|
Catanzaro, E. J., Murphy, T. J., 1966. Magnesium Isotope Ratios in Natural Samples. Journal of Geophysical Research(1896-1977), 71(4): 1271-1274. https://doi.org/10.1029/JZ071i004p01271
|
Claudia, G. D. V., Chernonozhkin, S. M., Grigoryan, R., et al., 2020. Characterization of the New Isotopic Reference Materials IRMM-524A and ERM-AE143 for Fe and Mg Isotopic Analysis of Geological and Biological Samples. Journal of Analytical Atomic Spectrometry, 35(11): 2517-2529. https://doi.org/10.1039/D0JA00225A
|
Chang, V. T. C., Makishima, A., Belshaw, N. S., et al., 2003. Purification of Mg from Low-Mg Biogenic Carbonates for Isotope Ratio Determination Using Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 18(4): 296-301. https://doi.org/10.1039/B210977H
|
Dong, A. G., Zhu, X. K., 2016. Mg Isotope Geochemical Cycle in Supergene Environment. Advances in Earth Science, 31(1): 43-58(in Chinese with English abstract).
|
Fischer, A. G., 1984. The Two Phanerozoic Supercycles. In: Berggren, W. A., Vancouvering, J. A., eds., Catastrophies in Erath History. Princeton University Press, Princeton, 129-148.
|
Fantle, M. S., Higgins, J., 2014. The Effects of Diagenesis and Dolomitization on Ca and Mg Isotopes in Marine Platform carbonates: Implications for the Geochemical Cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458-481. https://doi.org/10.1016/j.gca.2014.07.025
|
Fantel, M. S., Barnes, B. D., Lau, K. V., 2020. The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record. Annual Review of Earth and Planetary Sciences, 48: 549-583. https://doi.org/10.1146/annurev-earth-073019-060021
|
Gesker, A., Zorlu, J., Richter, D. K., et al., 2012. Impact of Diagenesis and Low Grade Metamorphosis on Isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and Elemental (Ca, Mg, Mn, Fe and Sr) Signatures of Triassic Sabkha Dolomites. Chemical Geology, 332: 45-64. https://doi.org/10.1016/j.chemgeo.2012.09.014
|
Gesker, A., Lokier, S., Dietzel, M., et al., 2015a. Magnesium Isotope Composition of Sabkha Porewater and Related (Sub-)Recent Stoichiometric Dolomites, Abu Dhabi (UAE). Chemical Geology, 393: 112-124. https://doi.org/10.1016/j.chemgeo.2014.11.020
|
Gesker, A., Goldstein, R. H., Mavromatis, V., et al., 2015b. The Magnesium Isotope (δ26Mg) Signature of Dolomites. Geochimica et Cosmochimica Acta, 149: 131-151. https://doi.org/10.1016/j.gca.2014.11.003
|
Galy, A., Belshaw, N. S., Halicz, L., et al., 2001. High-Precision Measurement of Magnesium Isotopes by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 208(1/2/3): 89-98. https://doi.org/10.1016/S1387-3806(01)00380-3
|
Galy, A., Bar-Matthews, M., Halicz, L., et al., 2002. Mg Isotopic Composition of Carbonate: Insight from Speleothem Formation. Earth and Planetary Science Letters, 201(1): 105-115. https://doi.org/10.1016/S0012-821X(02)00675-1
|
Galy, A., Yoffe, O., Janney, P. E., et al., 2003. Magnesium Isotope Heterogeneity of the Isotopic Standard SRM980 and New Reference Materials for Magnesium-Isotope-Ratio Measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352-1356. https://doi.org/10.1039/B309273A
|
Gao, T., Ke, S., Chen, S. M., et al., 2015. Mg Isotope Fractionation during Dolomite Weathering: Effects on Mg Isotope Composition of Dolomite, Surface Water and Groundwater. Abstracts of the 15th Annual Conference of the Chinese Society of Mineral Petrogeochemistry, 139(in Chinese with English abstract).
|
Gothmann, A. M., Stolarski, J., Adkins, J. F., et al., 2017. A Cenozoic Record of Seawater Mg Isotopes in Well-Preserved Fossil Corals. Geology, 45(11): 1039-1042. https://doi.org/10.1130/g39418.1
|
Holland, H. D., 2005. Sea Level, Sediments and the Composition of Seawater. American Journal of Science, 305(3): 220-239. https://doi.org/10.2475/ajs.305.3.220
|
Hardie, L. A., 1996. Secular Variation in Seawater chemistry: An Explanation for the Coupled Secular Variation in the Mineralogies of Marine Limestones and Potash Evaporites over the Past 600 Ma Geology, 24(3): 279. https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2 doi: 10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
|
Higgins, J. A., Schrag, D. P., 2010. Constraining Magnesium Cycling in Marine Sediments Using Magnesium Isotopes. Geochimica et Cosmochimica Acta, 74(17): 5039-5053. https://doi.org/10.1016/j.gca.2010.05.019
|
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow-Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046
|
He, X. X., Li, S. Z., Tang, S. H., 2008. Advances in the Study of MgIsotopes Application. Acta Petrologica et Mineralogica, 27(5): 472-476(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2008.05.013
|
Handler, M. R., Baker, J. A., Schiller, M., et al., 2009. Magnesium Stable Isotope Composition of Earth's Upper Mantle. Earth and Planetary Science Letters, 282(1/2/3/4): 306-313. https://doi.org/10.1016/j.epsl.2009.03.031
|
Huang, F., Glessner, J., Ianno, A., et al., 2009. Magnesium Isotopic Composition of Igneous Rock Standards Measured by MC-ICP-MS. Chemical Geology, 268(1/2): 15-23. https://doi.org/10.1016/j.chemgeo.2009.07.003
|
Higgins, J., Fantle, M. S., 2014. The Effects of Diagenesis and Dolomitization on Ca and Mg Isotopes in Marine Platform carbonates: Implications for the Geochemical Cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458-481. https://doi.org/10.1016/j.gca.2014.07.025
|
Hu, Z. Y., Hu, W. X., Wang, X. M., et al., 2017. Resetting of Mg Isotopes between Calcite and Dolomite during Burial metamorphism: Outlook of Mg Isotopes as Geothermometer and Seawater Proxy. Geochimica et Cosmochimica Acta, 208: 24-40. https://doi.org/10.1016/j.gca.2017.03.026
|
Hu, Z. Y., Xia, Z. G., Li, C., 2023. The Enigma of Marine Mg/Ca Variations since the Late Cenozoic: Mg Isotope Records from Carbonate Rocks of the South China Sea (SCS) Islands and Reefs. In: Committee on Lithofacies Paleogeography, Chinese Society for Mineralogy, Petrology and Geochemistry; International Society of Palaeogeography (ISP), Committee on Sedimentology, Chinese Society for Mineralogy, Petrology and Geochemistry, Committee on Sedimentary Geology, Chinese Geological Society, eds., Abstracts of the 17th National Conference on Paleogeography and Sedimentology: Poster Abstracts. School of Ocean and Earth Science, Tongji University; School of Earth Sciences and Engineering, Nanjing University, 040256(in Chinese with English abstract).
|
Jacobson, A. D., Zhang, Z. F., Lundstrom, C., et al., 2010. Behavior of Mg Isotopes during Dedolomitization in the Madison Aquifer, South Dakota. Earth and Planetary Science Letters, 297(3/4): 446-452. https://doi.org/10.1016/j.epsl.2010.06.038
|
Ke, S., Liu, S. A., Li, W. Y., et al., 2011. Recent Advances in Magnesium Isotope Geochemistry and Its Applications. Acta Petrologica Sinica, 27(2): 383-397(in Chinese with English abstract).
|
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., et al., 2001. Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions. Science, 294(5544): 1086-1088. https://doi.org/10.1126/science.1064280
|
Lavoie, D., Jackson, S., Girard, I., 2014. Magnesium Isotopes in High-Temperature Saddle Dolomite Cements in the Lower Paleozoic of Canada. Sedimentary Geology, 305: 58-68. https://doi.org/10.1016/j.sedgeo.2014.03.002
|
Liu, X. Y., Shao, L., Shi, D. F., et al., 2021. Relationship between Elemental Geochemical Characteristics of Xike-1 Well in Xisha Islands and Sea-Level Fluctuations. Marine Geology Frontiers, 37(6): 8-17(in Chinese with English abstract).
|
Li, Q., Bao, Z. D., 2023. Tracing the Genesis of Cambrian Xiaqiulitage Formation Dolomite in the Tarim Basin using Mg Isotopes and Stable Mg Isotopic Mechanisms under Tectonic-Hydrothermal Activities. Abstracts of the 17th National Conference on Paleogeography and Sedimentology(in Chinese with English abstract).
|
Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
|
Ling, M. X., Sedaghatpour, F., Teng, F. Z., et al., 2011. Homogeneous Magnesium Isotopic Composition of Seawater: an Excellent Geostandard for Mg Isotope Analysis. Rapid Communications in Mass Spectrometry, 25(19): 2828-2836. https://doi.org/10.1002/rcm.5172
|
Li, W. Q., Bialik, O. M., Wang, X. M., et al., 2019. Effects of Early Diagenesis on Mg Isotopes in dolomite: The Roles of Mn(Ⅳ)-Reduction and Recrystallization. Geochimica et Cosmochimica Acta, 250: 1-17. https://doi.org/10.1016/j.gca.2019.01.029
|
Mavromatis, V., Meister, P., Oelkers, E. H., 2014. Using Stable Mg Isotopes to Distinguish Dolomite Formation mechanisms: A Case Study from the Peru Margin. Chemical Geology, 385: 84-91. https://doi.org/10.1016/j.chemgeo.2014.07.019
|
Muller, M. N., Kısakürek, B., Buhl, D., et al., 2011. Response of the Coccolithophores Emiliania Huxleyi and Coccolithus Braarudii to Changing Seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca Ratios and Δ44/40Ca, Δ26/24Mg of Coccolith Calcite. Geochimica et Cosmochimica Acta, 75(8): 2088-2102. https://doi.org/10.1016/j.gca.2011.01.035
|
Ning, M., Lang, X. G., Huang, K. J., et al., 2020. Towards Understanding the Origin of Massive Dolostones. Earth and Planetary Science Letters, 545: 116403. https://doi.org/10.1016/j.epsl.2020.116403
|
Planchon, F., Poulain, C., Langlet, D., et al., 2013. Mg-Isotopic Fractionation in the Manila Clam (Ruditapes Philippinarum): New Insights into Mg Incorporation Pathway and Calcification Process of Bivalves. Geochimica et Cosmochimica Acta, 121: 374-397. https://doi.org/10.1016/j.gca.2013.07.002
|
Peng, Y., Shen, B., Lang, X. G., et al., 2016. Constraining Dolomitization by Mg isotopes: A Case Study from Partially Dolomitized Limestones of the Middle Cambrian Xuzhuang Formation, North China. Geochemistry, Geophysics, Geosystems, 17(3): 1109-1129. https://doi.org/10.1002/2015GC006057
|
Qiao, Z. F., Shen, A. J., Liang, F., et al., 2023. Formation Process of Scale buried Dolomite Based on Magnesium Isotope: a Case Study of Penglaiba Formation, Tarim Basin, China. Acta Geologica Sinica, 97(7): 2293-2310(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2023.07.012
|
Rosman, K. J. R., Taylor, P. D. P., 1998. Isotopic Compositions of the Elements 1997 (Technical Report). Journal of Physical & Chemical Reference Data, 27: 1275-1287.
|
Ra, K., Kitagawa, H., Shiraiwa, Y., 2010a. Mg Isotopes in Chlorophyll: a Coccoliths of Cultured Coccolithophores (Emiliania Huxleyi) by MC-ICP-MS. Marine Chemistry, 122(1/2/3/4): 130-137. https://doi.org/10.1016/j.marchem.2010.07.004
|
Ra, K., Kitagawa, H., Shiraiwa, Y., 2010b. Mg Isotopes and Mg/Ca Values of Coccoliths from Cultured Specimens of the Species Emiliania Huxleyi and Gephyrocapsa Oceanica. Marine Micropaleontology, 77(3/4): 119-124. https://doi.org/10.1016/j.marmicro.2010.08.003
|
Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905-3923. https://doi.org/10.1016/S0016-7037(03)00174-1
|
Ren, M., Jones, B., 2018. Genesis of Island Dolostones. Sedimentology, 65(6): 2003-2033. https://doi.org/10.1111/sed.12455
|
Schiller, M., Bizzarro, M., Baker, J. A., 2007. Development of Precise and Accurate Magnesium Isotope Measurements by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Workshop on Chronology of Meteorites, 4023.
|
Saenger, C., Wang, Z. R., 2014. Magnesium Isotope Fractionation in Biogenic and Abiogenic Carbonates: implications for PaleoenvironmentalProxies. Quaternary Science Reviews, 90: 1-21. https://doi.org/10.1016/j.quascirev.2014.01.014
|
Sandberg, P. A., 1983. An Oscillating Trend in Phanerozoic Non-Skeletal Carbonate Mineralogy. Nature, 305(5929): 19-22. https://doi.org/10.1038/305019a0
|
Stanley, S. M., Hardie, L. A., 1998. Secular Oscillations in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1/2): 3-19. https://doi.org/10.1016/S0031-0182(98)00109-6
|
Spencer, R. J., Hardie, L. A., 1990. Control of Seawater Composition by Mixing of River Waters and Mid-Ocean Ridge Hydrothermal Brines. Spec. Publ. Geochem. Soc. 19: 409-419.
|
Simms, M., 1984. Dolomitization by Thermal Convection in Carbonate Platforms: ABSTRACT. AAPGBulletin, 68: AD4611D3-16F7-11D7-8645000102C1865D. https://doi.org/10.1306/ad4611d3-16f7-11d7-8645000102c1865d
|
Tipper, E. T., Galy, A., Gaillardet, J., et al., 2006. The Magnesium Isotope Budget of the Modern Ocean: Constraints from Riverine Magnesium Isotope Ratios. Earth and Planetary Science Letters, 250(1/2): 241-253. https://doi.org/10.1016/j.epsl.2006.07.037
|
Teng, F. Z., Li, W. Y., Rudnick, R. L., et al., 2010. Contrasting Lithium and Magnesium Isotope Fractionation during Continental Weathering. Earth and Planetary Science Letters, 300(1/2): 63-71. https://doi.org/10.1016/j.epsl.2010.09.036
|
Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. https://doi.org/10.2138/rmg.2017.82.7
|
Tipper, E. T., Calmels, D., Gaillardet, J., et al., 2012. Positive Correlation between Li and Mg Isotope Ratios in the River Waters of the Mackenzie Basin Challenges the Interpretation of Apparent Isotopic Fractionation during Weathering. Earth and Planetary Science Letters, 333: 35-45. https://doi.org/10.1016/j.epsl.2012.04.023
|
Tang, B., Wang, J. T., Fu, Y., et al., 2020. Magnesium Isotope Composition of Different Geological Reservoirs and Controlling Factors of Magnesium Isotope Fractionation in the Formation of Carbonate Minerals: A Summary of Previous Results. Rock and Mineral Testing, 39(2): 162-173(in Chinese with English abstract).
|
Vail, P. R., Mitchum, R. M., Thompson, S., 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 4: Global Cycles of Relative Changes of Sea Level. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. Mem. Amer. Assac. Petrol. Geol, 1977, 26, 83-97. https://doi.org/10.1306/m26490c6
|
Von Strandmann, P. A. E., Forshaw, J., Schmidt, D. N., 2014. Modern and Cenozoic Records of Seawater Magnesium from Foraminiferal Mg Isotopes. Biogeosciences, 11(18): 5155-5168. https://doi.org/10.5194/bg-11-5155-2014
|
Vahrenkamp, V. C., Swart, P. K., 1987. Stable Isotopes as Tracers of Fluid/Rock Interactions during Massive PlatformDolomitization, Little Bahama Bank. AAPG Bulletin, 71: 948877DA-1704-11D7-8645000102C1865D. https://doi.org/10.1306/948877da-1704-11d7-8645000102c1865d
|
Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3): 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2
|
Wilkinson, B. H., Algeo, T. J., 1989. Sedimentary Carbonate Record of Calcium-Magnesium Cycling. American Journal of Science, 289(10): 1158-1194. https://doi.org/10.2475/ajs.289.10.1158
|
Wombacher, F., Eisenhauer, A., Böhm, F., et al., 2011. Magnesium Stable Isotope Fractionation in Marine Biogenic Calcite and Aragonite. Geochimica et Cosmochimica Acta, 75(19): 5797-5818. https://doi.org/10.1016/j.gca.2011.07.017
|
Xia, P., Ning, M., Wen, H. G., et al., 2021. Tracing Carbonate Deposition-DiagenesisProcess Using Magnesium Isotopes: Implications for Reconstructing Deep-Time Seawater Magnesium Isotopic Composition. Acta Sedimentologica Sinica, 39(6): 1546-1564(in Chinese with English abstract).
|
Xu, H., Cai, F., Wang, Y. J., et al., 1999. Evolution of Miocene Reef in Xisha and Reef-Building byAlgae. Chinese Science Bulletin, 44(13): 1435-1439(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.1999.13.017
|
Yoshimura, T., Tanimizu, M., Inoue, M., et al., 2011. Mg Isotope Fractionation in Biogenic Carbonates of Deep-Sea Coral, Benthic Foraminifera, and Hermatypic Coral. Analytical and Bioanalytical Chemistry, 401(9): 2755-2769. https://doi.org/10.1007/s00216-011-5264-0
|
Young, E. D., Galy, A., 2004. The Isotope Geochemistry and Cosmochemistry of Magnesium. Reviews in Mineralogy and Geochemistry, 55(1): 197-230. https://doi.org/10.2138/gsrmg.55.1.197
|
Yang, W., Teng, F. Z., Zhang, H. F., 2009. Chondritic Magnesium Isotopic Composition of the Terrestrial mantle: A Case Study of Peridotite Xenoliths from the North China Craton. Earth and Planetary Science Letters, 288(3/4): 475-482. https://doi.org/10.1016/j.epsl.2009.10.009
|
Zhu, G. Y., Li, X., Li, T. T., et al., 2023. Genesis Mechanism and Mg Isotope Difference between the Sinian and Cambrian Dolomites in Tarim Basin. Science China Earth Sciences, 66(2): 334-357. https://doi.org/10.1007/s11430-021-1010-6
|
Zhu, G. Y., Li, X., Li, T. T., et al., 2023. Magnesium Isotope Trace Dolomitization Fluid Migration Path: A Case Study of the Carboniferous Huanglong Formation in the Sichuan Basin. Acta Geologica Sinica, 97(3): 753-771(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2023.03.008
|
Zenger, D. H., Dunham, J. B., Ethington, R. L., 1982. Concepts and Models of Dolomitization. Sedimentary Geology, 32(1/2): 154-155. https://doi.org/10.1016/0037-0738(82)90020-3
|
Zhu, X. K., He, X. X., Yang, C., 2005. Study on Isotopic Heterogeneity of Mg Isotope Standard Reference Material SRM980. Data Collection of National Conference on Isotope Geochronology and Isotope Geochemistry, 12-14(in Chinese with English abstract).
|
Zhu, X. K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract).
|
董爱国, 朱祥坤, 2016. 表生环境中Mg同位素的地球化学循环. 地球科学进展, 31(1): 43-58.
|
高庭, 柯珊, 陈寿铭, 等, 2015. 白云岩风化过程中Mg同位素的分馏: 对白云岩、地表水和地下水Mg同位素组成的影响. 中国矿物岩石地球化学学会第15届学术年会论文摘要集, 139.
|
何学贤, 李世珍, 唐索寒, 2008. Mg同位素应用研究进展. 岩石矿物学杂志, 27(5): 472-476. doi: 10.3969/j.issn.1000-6524.2008.05.013
|
胡忠亚, 夏芝广, 刘传, 2023. 晚新生代以来海洋Mg/Ca变化之谜: 南海岛礁碳酸盐岩的Mg同位素记录. 见: 中国矿物岩石地球化学学会岩相古地理专业委员会, International Society of Palaeogeography (ISP, 国际古地理学会), 中国矿物岩石地球化学学会沉积学专业委员会, 中国地质学会沉积地质专业委员会, 第十七届全国古地理学及沉积学学术会议摘要集: 展板摘要, 同济大学海洋与地球科学学院, 南京大学地球科学与工程学院, 040256.
|
柯珊, 刘盛遨, 李王晔, 等, 2011. Mg同位素地球化学研究新进展及其应用. 岩石学报, 27(2): 383-397.
|
刘新宇, 邵磊, 史德锋, 等, 2021. 西沙西科1井元素地球化学特征与海平面升降的关系. 海洋地质前沿, 37(6): 8-17.
|
李茜, 鲍志东, 2023. 应用Mg同位素示踪塔里木盆地寒武系下丘里塔格组白云岩成因及构造-热液活动下Mg同位素稳定机制. 第17届全国古地理学及沉积学学术会议摘要.
|
乔占峰, 沈安江, 梁峰, 等, 2023. 基于Mg同位素的规模埋藏白云岩形成过程——以塔里木盆地蓬莱坝组为例. 地质学报, 97(7): 2293-2310. doi: 10.3969/j.issn.0001-5717.2023.07.012
|
唐波, 王景腾, 付勇, 2020. 不同地质储库中的Mg同位素组成及碳酸盐矿物形成过程中的Mg同位素分馏控制因素. 岩矿测试, 39(2): 162-173.
|
夏攀, 甯濛, 文华国, 等, 2021. Mg同位素示踪碳酸盐岩沉积-成岩过程——对恢复深时海水Mg同位素组成的启示. 沉积学报, 39(6): 1546-1564.
|
许红, 蔡峰, 王玉净, 等, 1999. 西沙中新世生物礁演化与藻类的造礁作用. 科学通报, (13): 1435-1439. doi: 10.3321/j.issn:0023-074X.1999.13.017
|
朱光有, 李茜, 李婷婷, 等, 2023. Mg同位素示踪白云化流体迁移路径——以四川盆地石炭系黄龙组为例. 地质学报, 97(3): 753-771. doi: 10.3969/j.issn.0001-5717.2023.03.008
|
朱祥坤, 何学贤, 杨淳, 2005. Mg同位素标准参考物质SRM980的同位素不均一性研究. 全国同位素地质年代学、同位素地球化学学术讨论会资料集, 12-14.
|
朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688.
|