Citation: | Wu Jian, Tian Shihong, Li Guangming, Fu Jiangang, Guo Weikang, Xu Wei, Li Haotong, Li Wenqiang, Xiang Kaiyi, Huang Changqi, Liu Wenbin, 2025. Petrogenesis of Lalong Leucogranites in Eastern Himalayan Orogenic Belt and Relationship with South Tibetan Detachment System. Earth Science, 50(7): 2593-2612. doi: 10.3799/dqkx.2025.049 |
As a product of collision orogenic belt, leucogranites are not only closely related to rare metal mineralization, but also have great significance to orogenesis and plateau uplift mechanism. The petrogenesis of leucogranites is still controversial. Earlier studies suggested that leucogranites were generated by low-degree in-situ partial melting of metasedimentary rocks, but in recent years, more scholars have pointed out that they may be highly fractionated granites, and the magma had undergone an intensive fractional crystallization. In order to explore the petrogenesis of leucogranites, we collected Lalong leucogranites and their sedimentary surrounding rocks (marbles and slates) in the eastern Himalayan orogenic belt to analyze the major and trace elements, Sr-Nd isotopes and monazite U-Th-Pb dating. Lalong leucogranites are located in the core of the Lalong dome, where two-mica granites, muscovite granites and albite granites are exposed in turn from inside to outside. The dating results show that these three leucogranites have similar emplacement ages (22-23 Ma). Generally, the leucogranites show high SiO2 (73.0%-75.7%), high K2O (3.50%-6.53%), low MgO (0.03%-0.22%) and peraluminum (A/CNK=1.05-1.24). From two-mica granites through muscovite granites to albite granites, the negative Eu anomalies became intensified, Rb, Rb/Sr and Y/Ho gradually increased, while Sr, Ba, K/Rb and Zr/Hf gradually decreased. In addition, these leucogranites have consistent Sr-Nd isotopic compositions: (87Sr/86Sr)i=0.736 456-0.737 929, εNd(t)=-12.4 to -12.1, which are more depleted than that of the surrounding rocks (εNd(t)=-16.9 to -15.1). Two-mica granites have consistent Sr-Nd isotopic compositions with the higher Himalayan crystallines, the high CaO/Na2O ratio values (0.33-0.42) and Al2O3/TiO2 ratio values (197-459), indicating that their source region is dominated by clastic rocks. The spatial distribution characteristics in the field and data results show that the Lalong leucogranites may have originated from muscovite dehydration melting of metagreywacks in higher Himalayan crystallines, which had undergone certain degree of fractional crystallization rather than generated by in-situ partial melting of metasedimentary rocks. The trace element Rayleigh fractionation modeling results also prove that when two-mica granite is used as the initial melt, it could generate muscovite granites and albite granites after fractional crystallization of about 70% and about 90%, respectively. Considering the overlapping relationship between the South Tibetan Detachment System and the Lalong leucogranites, this paper considers that the South Tibetan Detachment System may have triggered partial melting of the leucogranites source region by decompression and provided space for the flowage differentiation of the leucogranites.
Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/G37475.1
|
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
|
Burg, J. P., Chen, G. M., 1984. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 311(5983): 219-223. https://doi.org/10.1038/311219a0
|
Cao, H. W., Li, G. M., Zhang, L. K., et al., 2022. Genesis of Himalayan Leucogranite and Its Potentiality of Rare-Metal Mineralization. Sedimentary Geology and Tethyan Geology, 42(2): 189-211 (in Chinese with English abstract).
|
Chu, Y., Guo, Y. L., Liu, T. J., et al., 2024. South Tibetan Detachment System Activity and Leucogranite Emplacement: Insights from the Shisha Pangma Regions. Acta Petrologica Sinica, 40(5): 1461-1474 (in Chinese with English abstract).
|
Dingwell, D. B., Knoche, R., Webb, S. L., 1993. The Effect of P2O5 on the Viscosity of Haplogranitic Liquid. European Journal of Mineralogy, 5(1): 133-140. https://doi.org/10.1127/ejm/5/1/0133
|
Dingwell, D. B., Knoche, R., Webb, S. L., et al., 1992. The Effect of B2O3 on the Viscosity of Haplogranitic Liquids. American Mineralogist, 77(5-6): 457-461.
|
Fu, J. G., Li, G. M., Dong, S. L., et al., 2020. Identification and Its Significances of the Lalong Be-Nb-Ta-Bearing Albite Granite in the Northern Himalaya, Tibet. Sedimentary Geology and Tethyan Geology, 40(2): 91-103 (in Chinese with English abstract).
|
Fu, J. G., Li, G. M., Wang, G. H., et al., 2021. Geological Characteristics and Metallogenic Types of Be-Nb-Ta Rare Metals in the Lalong Dome, Southern Tibet, China. Geotectonica et Metallogenia, 45(5): 913-933 (in Chinese with English abstract).
|
Fu, J. G., Li, G. M., Wang, G. H., et al., 2023. Geochemical Evidence for Genesis of Nb-Ta-Be Rare Metal Mineralization in Highly Fractionated Leucogranites at the Lalong Dome, Tethyan Himalaya, China. Minerals, 13(11): 1456. https://doi.org/10.3390/min13111456
|
Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155. https://doi.org/10.1016/j.gca.2014.01.003
|
Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39-42. https://doi.org/10.1130/G38336.1
|
Gonçalves, G. O., Lana, C., Scholz, R., et al., 2016. An Assessment of Monazite from the Itambé Pegmatite District for Use as U-Pb Isotope Reference Material for Microanalysis and Implications for the Origin of the "Moacyr" Monazite. Chemical Geology, 424: 30-50. https://doi.org/10.1016/j.chemgeo.2015.12.019
|
Gonçalves, G. O., Lana, C., Scholz, R., et al., 2018. The Diamantina Monazite: A New Low-Th Reference Material for Microanalysis. Geostandards and Geoanalytical Research, 42(1): 25-47. https://doi.org/10.1111/ggr.12192
|
Guillot, S., Le Fort, P., 1995. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lithos, 35(3-4): 221-234. https://doi.org/10.1016/0024-4937(94)00052-4
|
Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1-3): 107-114. https://doi.org/10.1016/0009-2541(91)90051-R
|
Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/BF00310881
|
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
|
Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6): 1537-1546. https://doi.org/10.1029/94TC01611
|
Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391-400. https://doi.org/10.1144/GSL.SP.1993.074.01.26
|
Hou, Z. Q., Mo, X. X., Yang, Z. M., et al., 2006. Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2): 340-351 (in Chinese with English abstract).
|
Hu, F. Y., Pu, H. L., Guo, Z., et al., 2024. Discovery of the Gangbu Spodumene-Bearing Pegmatite in the Shisha Pangma Region and Its Geological Significance. Acta Petrologica Sinica, 40(5): 1489-1509 (in Chinese with English abstract).
|
Huang, C. M., Li, G. M., Zhang, Z., et al., 2018. Petrogenesis of the Cuonadong Leucogranite in South Tibet: Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating. Earth Science Frontiers, 25(6): 182-195 (in Chinese with English abstract).
|
Huang, Y., Fu, J. G., Li, G. M., et al., 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206 (in Chinese with English abstract).
|
Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11-12): 1229-1251. https://doi.org/10.2138/am-1995-11-1213
|
Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin. https://doi.org/10.1007/978-3-642-61049-3
|
Kellett, D. A., Grujic, D., Erdmann, S., 2009. Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya: Implications for Continental Collision. Lithosphere, 1(5): 259-281. https://doi.org/10.1130/l56.1
|
King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. GSA Bulletin, 123(1-2): 218-239. https://doi.org/10.1130/B30085.1
|
Langille, J., Lee, J., Hacker, B., et al., 2010. Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 32(1): 70-85. https://doi.org/10.1016/j.jsg.2009.08.009
|
Le Fort, P., 1981. Manaslu Leucogranite: A Collision Signature of the Himalaya: A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth, 86(B11): 10545-10568. https://doi.org/10.1029/JB086iB11p10545
|
Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4): 1003-1008 (in Chinese with English abstract).
|
Liu, X. C., Yang, L., He, S. X., et al., 2024. A Preliminary Study on Petrogenesis of the Shisha Pangma Leucogranites. Acta Petrologica Sinica, 40(5): 1446-1460 (in Chinese with English abstract).
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
|
Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2019. Mineralogical Evidence for Fractionation Processes in the Himalayan Leucogranites of the Ramba Dome, Southern Tibet. Lithos, 340: 71-86. https://doi.org/10.1016/j.lithos.2019.05.004
|
Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2020. The Mechanisms of Fractional Crystallization for the Himalayan Leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571 (in Chinese with English abstract).
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
|
Ren, C. M., Zheng, Y. C., Li, X., et al., 2024. Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet. Earth Science, 49(10): 3610-3628 (in Chinese with English abstract).
|
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. British Library Cataloguing-in-Publication Data, 1-352. https://doi.org/10.4324/9781315845548
|
Scaillet, B., France-Lanord, C., Le Fort, P., 1990. Badrinath-Gangotri Plutons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163-188. https://doi.org/10.1016/0377-0273(90)90017-A
|
Shi, Y. L., Wang, Q. Y., 1997. Thermal Modeling of the Formation of Leucogranites in the Higher Himalaya. Chinese Journal of Geophysics, 40(5): 667-676 (in Chinese with English abstract).
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
|
Tao, L. R., Cao, S. Y., Li, W. Y., et al., 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023 (in Chinese with English abstract).
|
Thiede, R. C., Arrowsmith, J. R., Bookhagen, B., et al., 2006. Dome Formation and Extension in the Tethyan Himalaya, Leo Pargil, Northwest India. GSA Bulletin, 118(5-6): 635-650. https://doi.org/10.1130/B25872.1
|
Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Scientia Sinica Terrae, 47(8): 871-880 (in Chinese).
|
Wang, Y. J., Fan, W. M., Guo, F., 2003. Geochemistry of Early Mesozoic Potassium-Rich Diorites-Granodiorites in Southeastern Hunan Province, South China: Petrogenesis and Tectonic Implications. Geochemical Journal, 37(4): 427-448. https://doi.org/10.2343/geochemj.37.427
|
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese).
|
Wu, F. Y., Liu, X. C., Liu, Z. C., et al., 2020. Highly Fractionated Himalayan Leucogranites and Associated Rare-Metal Mineralization. Lithos, 352: 105319. https://doi.org/10.1016/j.lithos.2019.105319
|
Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract).
|
Wu, F. Y., Wang, R. C., Liu, X. C., et al., 2021. New Breakthroughs in the Studies of Himalayan Rare-Metal Mineralization. Acta Petrologica Sinica, 37(11): 3261-3276 (in Chinese with English abstract).
|
Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5): 1420-1444 (in Chinese with English abstract).
|
Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005
|
Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98 (in Chinese with English abstract).
|
Zhao, J. X., Qin, K. Z., He, C. T., et al., 2024. Geological Features and Ore-Forming Mechanism of the Qiongjiagang Super-Large Pegmatite Lithium Deposit in Himalaya, China. Acta Petrologica Sinica, 40(9): 2664-2678 (in Chinese with English abstract).
|
曹华文, 李光明, 张林奎, 等, 2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力. 沉积与特提斯地质, 42(2): 189-211.
|
褚杨, 郭宜琳, 刘谭杰, 等, 2024. 藏南拆离系活动与淡色花岗岩就位——以希夏邦马峰地区为例. 岩石学报, 40(5): 1461-1474.
|
付建刚, 李光明, 董随亮, 等, 2020. 西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义. 沉积与特提斯地质, 40(2): 91-103.
|
付建刚, 李光明, 王根厚, 等, 2021. 西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义. 大地构造与成矿学, 45(5): 913-933.
|
侯增谦, 莫宣学, 杨志明, 等, 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340-351.
|
胡方泱, 蒲浩澜, 郭钊, 等, 2024. 希夏邦马峰地区岗布锂辉石伟晶岩的发现及其指示意义. 岩石学报, 40(5): 1489-1509.
|
黄春梅, 李光明, 张志, 等, 2018. 藏南错那洞淡色花岗岩成因: 来自全岩地球化学和锆石U-Pb年龄的约束. 地学前缘, 25(6): 182-195.
|
黄勇, 付建刚, 李光明, 等, 2019. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现. 地球科学, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114
|
李光明, 张林奎, 焦彦杰, 等, 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008.
|
刘小驰, 杨雷, 何少雄, 等, 2024. 希夏邦马峰淡色花岗岩岩石成因初步研究. 岩石学报, 40(5): 1446-1460.
|
刘志超, 吴福元, 刘小驰, 等, 2020. 喜马拉雅淡色花岗岩结晶分异机制概述. 岩石学报, 36(12): 3551-3571.
|
任春萌, 郑远川, 李鑫, 等, 2024. 藏南然巴晚中新世矽卡岩型钨矿化特征及地质意义. 地球科学, 49(10): 3610-3628. doi: 10.3799/dqkx.2023.139
|
石耀霖, 王其允, 1997. 高喜马拉雅淡色花岗岩形成的热模拟. 地球物理学报, 40(5): 667-676.
|
陶丽蓉, 曹淑云, 李文元, 等, 2024. 大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义. 地球科学, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007
|
王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学: 地球科学, 47(8): 871-880.
|
吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
|
吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
|
吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破. 岩石学报, 37(11): 3261-3276.
|
曾令森, 高利娥, 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444.
|
张泽明, 康东艳, 丁慧霞, 等, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
|
赵俊兴, 秦克章, 何畅通, 等, 2024. 喜马拉雅琼嘉岗伟晶岩型锂矿成矿地质特征和形成机制. 岩石学报, 40(9): 2664-2678.
|