• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Liu Juntao, Liu Xiaoli, Jia Zhige, Tang Jiazheng, Ruan Qiaozhe, Huang Yu, Deng Debeier, Li Fan, Shao Yanxiu, 2025. Coseismic Surface Deformation of the 2025 Ms6.8 Dingri Earthquake in Tibet, China Based on GaoFen-7 Imagery and DSM Differencing Technique. Earth Science, 50(8): 3284-3300. doi: 10.3799/dqkx.2025.081
    Citation: Liu Juntao, Liu Xiaoli, Jia Zhige, Tang Jiazheng, Ruan Qiaozhe, Huang Yu, Deng Debeier, Li Fan, Shao Yanxiu, 2025. Coseismic Surface Deformation of the 2025 Ms6.8 Dingri Earthquake in Tibet, China Based on GaoFen-7 Imagery and DSM Differencing Technique. Earth Science, 50(8): 3284-3300. doi: 10.3799/dqkx.2025.081

    Coseismic Surface Deformation of the 2025 Ms6.8 Dingri Earthquake in Tibet, China Based on GaoFen-7 Imagery and DSM Differencing Technique

    doi: 10.3799/dqkx.2025.081
    • Received Date: 2025-02-13
    • Publish Date: 2025-08-25
    • High-precision coseismic surface deformation is a key parameter for understanding shallow fault rupture mechanisms and accurately assessing seismic hazard. For the first time, GaoFen-7 imagery and Digital Surface Model (DSM) differencing technique were employed to obtain high-resolution coseismic surface vertical deformation associated with the January 7, 2025 Dingri Ms6.8 earthquake in Tibet, China. The revealed surface trace of the seismogenic fault and vertical deformation characteristics coincide with the Dengmocuo Fault dominated by normal faulting, indicating that the earthquake was a normal-faulting event. This earthquake generated a 42-kilometer-long surface deformation zone, with distinct segmentation in both deformation amplitude, gradient and width related to fault geometric complexity and dynamic rupture process. The deformation zone is divided into three segments from north to south: the N22°E-trending Zhananla segment, the N160°E-trending Dengmocuo Lake segment, and the N25°E-trending Cuoguoxiang segment. Pronounced deformation occurred in the Zhananla segment, reaching a maximum vertical displacement of approximately 2.97±0.20 m meters. The surface deformation observed along the Dengmocuo Lake segment is the least pronounced, potentially attributable to a change in the fault's orientation.The width of the coseismic deformation zone on fault segments spans 100 to 150 meters, suggesting that the diffuse deformation occurring within a limited volume surrounding the faults may be overlooked or underestimated, so it is necessary to carry out high-precision continuous monitoring.

       

    • loading
    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
      Barnhart, W. D., Gold, R. D., Hollingsworth, J., 2020. Localized Fault-Zone Dilatancy and Surface Inelasticity of the 2019 Ridgecrest Earthquakes. Nature Geoscience, 13(10): 699-704. https://doi.org/10.1038/s41561-020-0628-8
      Besl, P. J., McKay, N. D., 2002. A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256. https://doi.org/10.1109/34.121791
      Cao, H. Y., Zhang, X. W., Zhao, C. G., et al., 2020. System Design and Key Technolongies of the GF-7 Satellite. Chinese Space Science and Technology, 40(5): 1-9(in Chinese with English abstract).
      Chen, H., Qu, C. Y., Zhao, D. Z., et al., 2024. Large-Scale Extensional Strain in Southern Tibet from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 51(19): e2024GL110512. https://doi.org/10.1029/2024GL110512
      Fan, X. D., Wang, Y. Y., Tang, X. M., 2023. Block Adjustment without GCPS and Accuracy Verification for GF-7 Satellite Stereo Images. Remote Sensing Information, 38(5): 73-80(in Chinese with English abstract).
      Gold, R. D., Reitman, N. G., Briggs, R. W., et al., 2015. On- and Off-Fault Deformation Associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for Geologic Slip Rate Measurements. Tectonophysics, 660: 65-78. https://doi.org/10.1016/j.tecto.2015.08.019
      Hirschmuller, H., 2008. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 328-341. https://doi.org/10.1109/TPAMI.2007.1166
      Kapp, P., Guynn, J. H., 2004. Indian Punch Rifts Tibet. Geology, 32(11): 993. https://doi.org/10.1130/g20689.1
      Klinger, Y., Okubo, K., Vallage, A., et al., 2018. Earthquake Damage Patterns Resolve Complex Rupture Processes. Geophysical Research Letters, 45(19): 10, 279-10, 287. https://doi.org/10.1029/2018GL078842
      Leprince, S., Barbot, S., Ayoub, F., et al., 2007. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1529-1558. https://doi.org/10.1109/TGRS.2006.888937
      Li, C. L., Li, T., Shan, X. J., et al., 2023. Extremely Large Off-Fault Deformation during the 2021 Mw 7.4 Maduo, Tibetan Plateau, Earthquake. Seismological Research Letters, 94(1): 39-51. https://doi.org/10.1785/0220220139
      Li, D. D., Sui, Z. W., Long, X. X., et al., 2024. Geometry Processing and Accuracy Verification of Dual-Line Array Cameras of GF-7 Satellite. National Remote Sensing Bulletin, 28(3): 756-766(in Chinese with English abstract).
      Liu, F. C., Pan, J. W., Li, H. B., et al., 2025. Co-Seismic Surface Rupture of the 2025 Mw7.1 Tingri Earthquake and Potential Seismic Risk in Southern Tibetan Plateau. Acta Geologica Sinica, 99(3): 685-703(in Chinese with English abstract).
      Liu, J. H., Jónsson, S., Li, X., et al., 2025. Extensive Off-Fault Damage around the 2023 Kahramanmaraş Earthquake Surface Ruptures. Nature Communications, 16: 1286. https://doi.org/10.1038/s41467-025-56466-w
      Liu, X. L., Xia, T., Liu, J., et al., 2022. Distributed Characteristics of the Surface Deformations Associated with the 2021 MW7.4 Madoi Earthquake, Qinghai, China. Seismology and Geology, 44(2): 461-483(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2022.02.012
      Nissen, E., Maruyama, T., Ramon Arrowsmith, J., et al., 2014. Coseismic Fault Zone Deformation Revealed with Differential lidar: Examples from Japanese Mw∼7 Intraplate Earthquakes. Earth and Planetary Science Letters, 405: 244-256. https://doi.org/10.1016/j.epsl.2014.08.031
      Oskin, M. E., Arrowsmith, J. R., Corona, A. H., et al., 2012. Near-Field Deformation from the El Mayor-Cucapah Earthquake Revealed by Differential LiDAR. Science, 335(6069): 702-705.
      Shao, Y. X., Wang, A. S., Liu, J., et al., 2025. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695(in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
      Tang, H. Z., Xie, J. F., Tang, X. M., et al., 2022. On-Orbit Radiometric Performance of GF-7 Satellite Multispectral Imagery. Remote Sensing, 14(4): 886. https://doi.org/10.3390/rs14040886
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science. 105978 doi: 10.1126/science.105978
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916
      Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774
      Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms 6.8 Earthquake on January 7, 2025 in Dingri(Xizang, China)Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411(in Chinese with English abstract).
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111
      Xu, X. H., Tong, X. P., Sandwell, D. T., et al., 2016. Refining the Shallow Slip Deficit. Geophysical Journal International, 204(3): 1843-1862. https://doi.org/10.1093/gji/ggv563
      Xu, X. Y., 2019. Late Quaternary Activity of Kada Normal Fault in Shenzha-Dingjie Fault System in Southern Tibet and Its Environmental Effects(Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Xu, X., Chen, W., Ma, W., et al., 2002. Surface Rupture of the Kunlunshan Earthquake (ms 8.1), Northern Tibetan Plateau, China. Seismological Research Letters, 73(6): 884-892. https://doi.org/10.1785/gssrl.73.6.884
      Xu, Y. R., Fu, G. C., Liang, Z. Y., et al., 2025. Preliminary Study on the Characteristics of Landslides and Soil Liquefaction Triggered by the Dingri MS6.8 Earthquake on January 7, 2025, Southern Tibetan Plateau. Earth Science, 50(5): 1813-1829(in Chinese with English abstract).
      Yang, B., Wang, M., Xu, W., et al., 2017. Large-Scale Block Adjustment without Use of Ground Control Points Based on the Compensation of Geometric Calibration for ZY-3 Images. ISPRS Journal of Photogrammetry and Remote Sensing, 134: 1-14. https://doi.org/10.1016/j.isprsjprs. 2017.10.013. doi: 10.1016/j.isprsjprs.2017.10.013
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732(in Chinese with English abstract).
      Yang, W. C., Jiang, J. S., Qu, C., et al., 2019. A Study on Origin of Cenozoic Rifts in Qinghai-Xizang(Tibetan) Plateau. Geological Review, 65(2): 267-279(inChinesewithEnglishabstract).
      Yang, W. H., 2020. Digital Surface Model Generation of Weak Texture Regions in Optical Satellite Remote Sensing Images(Dissertation). Wuhan University, Wuhan(in Chinese with English abstract).
      Yin, A., 2000. Mode of Cenozoic East-West Extension in Tibet Suggesting a Common Origin of Rifts in Asia during the Indo-Asian Collision. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. https://doi.org/10.1029/2000JB900168
      Zhao, J. M., Du, P. R., 2016. On the Initial Collision between the Indian and Eurasian Continents. Seismology and Geology, 38(3): 783-796(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2016.03.022
      Zhou, Y., Parsons, B. E., Walker, R. T., 2018. Characterizing Complex Surface Ruptures in the 2013 Mw 7.7 Balochistan Earthquake Using Three-Dimensional Displacements. Journal of Geophysical Research: Solid Earth, 123(11): 10, 191-10, 211. https://doi.org/10.1029/2018JB016043
      曹海翊, 张新伟, 赵晨光, 等, 2020. 高分七号卫星总体设计与技术创新. 中国空间科学技术, 40(5): 1-9.
      范鑫东, 王洋洋, 唐新明, 2023. 高分七号卫星立体影像无地面控制区域网平差与精度验证. 遥感信息, 38(5): 73-80.
      李对对, 隋正伟, 龙小祥, 等, 2024. 高分七号卫星双线阵相机几何处理及其精度验证. 遥感学报, 28(3): 756-766.
      刘小利, 夏涛, 刘静, 等, 2022. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征. 地震地质, 44(2): 461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012
      刘富财, 潘家伟, 李海兵, 等, 2025. 2025年Mw7.1西藏定日地震地表破裂与同震位移分布特征. 地质学报, 99(3): 685-703.
      邵延秀, 王爱生, 刘静, 等, 2025.2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040
      石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15. doi: 10.3969/j.issn.0253-4967.2025.01.001
      田婷婷, 吴中海, 2023. 西藏申扎-定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      王楠, 李永生, 申文豪, 等, 2025. 2025年1月7日西藏定日Ms 6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版), 50(2): 404-411.
      徐心悦, 2019. 藏南申扎-定结断裂系卡达正断裂晚第四纪活动性及其环境效应(博士毕业论文). 北京: 中国地震局地质研究所.
      徐岳仁, 付国超, 梁泽毓, 等, 2025. 2025年1月7日西藏定日MS6.8地震触发滑坡与砂土液化特征初步研究. 地球科学, 50(5): 1813-1829. doi: 10.3799/dqkx.2025.043
      杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
      杨文环, 2020. 光学卫星遥感影像弱纹理区域数字表面模型提取方法研究(博士学位论文). 武汉: 武汉大学.
      赵俊猛, 杜品仁, 2016. 印度-亚洲大陆的初始碰撞. 地震地质, 38(3): 783-796.
      中华人民共和国应急管理部, 2025. 2025年1月全国自然灾害情况. http://220.197.169.100/xw/yjglbgzdt/202503/t20250306_516049.shtml.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (205) PDF downloads(30) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return