| Citation: | Gong Xueqiang, Zhou Yonghao, He Kun, Hu Xiewen, Luo Gang, Yang Dongqiang, Ma Hongsheng, 2025. Prediction Models for Post-Fire Debris Flow Susceptibility and Debris Flow Volume in Yajiang County, Sichuan, China. Earth Science, 50(10): 4096-4110. doi: 10.3799/dqkx.2025.094 | 
	                | 
					 Austin, M. P., 2002. Spatial Prediction of Species Distribution: An Interface between Ecological Theory and Statistical Modelling. Ecological Modelling, 157(2/3): 101-118.  https://doi.org/10.1016/S0304-3800(02)00205-3 
						
					 | 
			
| 
					 Bordoni, M., Galanti, Y., Bartelletti, C., et al., 2020. The Influence of the Inventory on the Determination of the Rainfall-Induced Shallow Landslides Susceptibility Using Generalized Additive Models. CATENA, 193: 104630.  https://doi.org/10.1016/j.catena.2020.104630 
						
					 | 
			
| 
					 Cannon, S. H., Gartner, J. E., Rupert, M. G., et al., 2010. Predicting the Probability and Volume of Postwildfire Debris Flows in the Intermountain Western United States. Geological Society of America Bulletin, 122(1-2): 127-144.  https://doi.org/10.1130/B26459.1 
						
					 | 
			
| 
					 Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269.  https://doi.org/10.1016/j.geomorph.2007.03.019 
						
					 | 
			
| 
					 Cannon, S. H., Powers, P. S., Savage, W. Z., 1998. Fire-Related Hyperconcentrated and Debris Flows on Storm King Mountain, Glenwood Springs, Colorado, USA. Environmental Geology, 35(2): 210-218.  https://doi.org/10.1007/s002540050307 
						
					 | 
			
| 
					 Chen, S. Q., Sun, Y. H., Ding, G. Q., et al., 2025. Holocene Dynamics of Vegetation Cover and Their Driving Mechanisms in Asian Drylands. Journal of Earth Science, 36(2): 839-842.  https://doi.org/10.1007/s12583-025-0173-x 
						
					 | 
			
| 
					 de Jesus Pugliese Viloria, A., Folini, A., Carrion, D., et al., 2024. Hazard Susceptibility Mapping with Machine and Deep Learning: A Literature Review. Remote Sensing, 16(18): 3374.  https://doi.org/10.3390/rs16183374 
						
					 | 
			
| 
					 DeGraff, J. V., Cannon, S. H., Gartner, J. E., 2015. The Timing of Susceptibility to Post-Fire Debris Flows in the Western United States. Environmental & Engineering Geoscience, 21(4): 277-292.  https://doi.org/10.2113/gseegeosci.21.4.277 
						
					 | 
			
| 
					 Dormann, C. F., Elith, J., Bacher, S., et al., 2013. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography, 36(1): 27-46.  https://doi.org/10.1111/j.1600-0587.2012.07348.x 
						
					 | 
			
| 
					 Esposito, G., Gariano, S. L., Masi, R., et al., 2023. Rainfall Conditions Leading to Runoff-Initiated Post-Fire Debris Flows in Campania, Southern Italy. Geomorphology, 423: 108557.  https://doi.org/10.1016/j.geomorph.2022.108557 
						
					 | 
			
| 
					 Fang, Z. C., Wang, Y., van Westen, C., et al., 2024. Landslide Hazard Spatiotemporal Prediction Based on Data-Driven Models: Estimating Where, When and How Large Landslide may Be. International Journal of Applied Earth Observation and Geoinformation, 126: 103631.  https://doi.org/10.1016/j.jag.2023.103631 
						
					 | 
			
| 
					 Gartner, J. E., Cannon, S. H., Santi, P. M., 2014. Empirical Models for Predicting Volumes of Sediment Deposited by Debris Flows and Sediment-Laden Floods in the Transverse Ranges of Southern California. Engineering Geology, 176: 45-56.  https://doi.org/10.1016/j.enggeo.2014.04.008 
						
					 | 
			
| 
					 Gartner, J. E., Cannon, S. H., Santi, P. M., et al., 2008. Empirical Models to Predict the Volumes of Debris Flows Generated by Recently Burned Basins in the Western U. S.. Geomorphology, 96(3-4): 339-354.  https://doi.org/10.1016/j.geomorph.2007.02.033 
						
					 | 
			
| 
					 Gorr, A., McGuire, L., Youberg, A., 2024. Empirical Models for Postfire Debris-Flow Volume in the Southwest United States. Journal of Geophysical Research: Earth Surface, 129(11): e2024JF007825.  https://doi.org/10.1029/2024jf007825 
						
					 | 
			
| 
					 Green, S. B., 1991. How Many Subjects does It Take to do a Regression Analysis. Multivariate Behavioral Research, 26(3): 499-510.  https://doi.org/10.1207/s15327906mbr2603_7 
						
					 | 
			
| 
					 He, K., Hu, X. W., Wu, Z. L., et al., 2024. Preliminary Analysis of the Wildfire on March 15, 2024, and the Following Post-Fire Debris Flows in Yajiang County, Sichuan, China. Landslides, 21(12): 3179-3189.  https://doi.org/10.1007/s10346-024-02364-z 
						
					 | 
			
| 
					 Hou, Z. F., Li, J. J., Song, C. H., et al., 2014. Understanding Miocene Climate Evolution in Northeastern Tibet: Stable Carbon and Oxygen Isotope Records from the Western Tianshui Basin, China. Journal of Earth Science, 25(2): 357-365.  https://doi.org/10.1007/s12583-014-0416-8 
						
					 | 
			
| 
					 Hu, X. W., Jin, T., Yin, W. Q., et al., 2020. The Characteristics of Forest Fire Burned Area and Susceptibility Assessment of Post-Fire Debris Flow in Jingjiu Township, Xichang City. Journal of Engineering Geology, 28(4): 762-771(in Chinese with English abstract). 
						
					 | 
			
| 
					 Hu, X. W., Wang, Y., Yang, Y., 2018. Research Actuality and Evolution Mechanism of Post-Fire Debris Flow. Journal of Engineering Geology, 26(6): 1562-1573(in Chinese with English abstract). 
						
					 | 
			
| 
					 Hu, X. W., Zhou, Y. H., He, K., et al., 2024. Post-Fire Debris Flow Mechanisms in Different Lithological Zones. Mountain Research, 42(4): 535-545(in Chinese with English abstract). 
						
					 | 
			
| 
					 Jin, T., Hu, X. W., Liu, B., et al., 2022. Susceptibility Prediction of Post-Fire Debris Flows in Xichang, China, Using a Logistic Regression Model from a Spatiotemporal Perspective. Remote Sensing, 14(6): 1306.  https://doi.org/10.3390/rs14061306 
						
					 | 
			
| 
					 Kean, J. W., Staley, D. M., Cannon, S. H., 2011. In Situ Measurements of Post-Fire Debris Flows in Southern California: Comparisons of the Timing and Magnitude of 24 Debris-Flow Events with Rainfall and Soil Moisture Conditions. Journal of Geophysical Research, 116(F4): F04019.  https://doi.org/10.1029/2011jf002005 
						
					 | 
			
| 
					 Kern, A. N., Addison, P., Oommen, T., et al., 2017. Machine Learning Based Predictive Modeling of Debris Flow Probability Following Wildfire in the Intermountain Western United States. Mathematical Geosciences, 49(6): 717-735.  https://doi.org/10.1007/s11004-017-9681-2 
						
					 | 
			
| 
					 Lombardo, L., Tanyas, H., Huser, R., et al., 2021. Landslide Size Matters: A New Data-Driven, Spatial Prototype. Engineering Geology, 293: 106288.  https://doi.org/10.1016/j.enggeo.2021.106288 
						
					 | 
			
| 
					 Long, Y. J., Li, W. L., Huang, R. Q., et al., 2023. A Comparative Study of Supervised Classification Methods for Investigating Landslide Evolution in the Mianyuan River Basin, China. Journal of Earth Science, 34(2): 316-329.  https://doi.org/10.1007/s12583-021-1525-9 
						
					 | 
			
| 
					 Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225.  https://doi.org/10.1016/j.earscirev.2020.103225 
						
					 | 
			
| 
					 Nikolopoulos, E. I., Destro, E., Bhuiyan, M. A. E., et al., 2018. Evaluation of Predictive Models for Post-Fire Debris Flow Occurrence in the Western United States. Natural Hazards and Earth System Sciences, 18(9): 2331-2343.  https://doi.org/10.5194/nhess-18-2331-2018 
						
					 | 
			
| 
					 Pourghasemi, H. R., Kariminejad, N., Amiri, M., et al., 2020. Assessing and Mapping Multi-Hazard Risk Susceptibility Using a Machine Learning Technique. Scientific Reports, 10: 3203.  https://doi.org/10.1038/s41598-020-60191-3 
						
					 | 
			
| 
					 Riley, K. L., Bendick, R., Hyde, K. D., et al., 2013. Frequency-Magnitude Distribution of Debris Flows Compiled from Global Data, and Comparison with Post-Fire Debris Flows in the Western U. S.. Geomorphology, 191: 118-128.  https://doi.org/10.1016/j.geomorph.2013.03.008 
						
					 | 
			
| 
					 Galiano, V. R., Castillo, M. S., Olmo, M. C., et al., 2015. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geology Reviews, 71: 804-818.  https://doi.org/10.1016/j.oregeorev.2015.01.001 
						
					 | 
			
| 
					 Shen, T., Deng, C. Y., Ding, X. H., et al., 2023. Analysis of Influencing Factors of Shanghai University Students' Self-Study Efficiency Based on Multiple Linear Stepwise Regression. Statistics and Application, 12(1): 100-109(in Chinese with English abstract). doi:  10.12677/SA.2023.121012 
						
					 | 
			
| 
					 Staley, D. M., Negri, J. A., Kean, J. W., et al., 2017. Prediction of Spatially Explicit Rainfall Intensity-Duration Thresholds for Post-Fire Debris-Flow Generation in the Western United States. Geomorphology, 278: 149-162.  https://doi.org/10.1016/j.geomorph.2016.10.019 
						
					 | 
			
| 
					 Tan, L., Zhang, L. L., Wei, X., et al., 2025. Study on Regional Landslide Susceptibility Assessment Method Based on U-Net Semantic Segmentation Network and Its Cross-Generalization Ability. China Civil Engineering Journal, 58(6): 103-116 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Thomas, M. A., Kean, J. W., McCoy, S. W., et al., 2023. Postfire Hydrologic Response along the Central California (USA) Coast: Insights for the Emergency Assessment of Postfire Debris-Flow Hazards. Landslides, 20(11): 2421-2436.  https://doi.org/10.1007/s10346-023-02106-7 
						
					 | 
			
| 
					 Wall, S. A., Roering, J. J., Rengers, F. K., 2020. Runoff-Initiated Post-Fire Debris Flow Western Cascades, Oregon. Landslides, 17(7): 1649-1661.  https://doi.org/10.1007/s10346-020-01376-9 
						
					 | 
			
| 
					 Wall, S., Murphy, B. P., Belmont, P., et al., 2023. Predicting Post-Fire Debris Flow Grain Sizes and Depositional Volumes in the Intermountain West, United States. Earth Surface Processes and Landforms, 48(1): 179-197.  https://doi.org/10.1002/esp.5480 
						
					 | 
			
| 
					 Wang, L., Zhang, Y. K., Shu, B., et al., 2023. Improved Method for Fusion of Loess Landslide Monitoring Data Based on Feature Selection and Stepwise Regression. Journal of Earth Sciences and Environment, 45(3): 511-521 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, Y., Hu, X. W., Wu, L. J., et al., 2022. Evolutionary History of Post-Fire Debris Flows in Ren'e Yong Valley in Sichuan Province of China. Landslides, 19(6): 1479-1490.  https://doi.org/10.1007/s10346-022-01867-x 
						
					 | 
			
| 
					 Wang, Y. H., Shen, H. W., Xie, W. Y., et al., 2024. Analysis of the Rainfall Threshold for Post-Fire Debris Flow Initiation: A Case Study of the Debris Flow at Ren'eyong Gully in Xiangcheng County, Sichuan Province. The Chinese Journal of Geological Hazard and Control, 35(1): 108-115 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Weiss, K., Khoshgoftaar, T. M., Wang, D. D., 2016. A Survey of Transfer Learning. Journal of Big Data, 3(1): 9.  https://doi.org/10.1186/s40537-016-0043-6 
						
					 | 
			
| 
					 Yang, Y., Hu, X. W., Han, M., et al., 2022. Post-Fire Temporal Trends in Soil Properties and Revegetation: Insights from Different Wildfire Severities in the Hengduan Mountains, Southwestern China. CATENA, 213: 106160.  https://doi.org/10.1016/j.catena.2022.106160 
						
					 | 
			
| 
					 Zhou, R. C., Hu, X. W., Jin, T., et al., 2024. Characteristics of Burned Area and Susceptibility Assessment of Post-Fire Debris Flow of Chongqing Wildfire in August, 2022. Hydrogeology & Engineering Geology, 51(5): 150-160 (in Chinese with English abstract). 
						
					 | 
			
| 
					 胡卸文, 金涛, 殷万清, 等, 2020. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价. 工程地质学报, 28(4): 762-771. 
					
					 | 
			
| 
					 胡卸文, 王严, 杨瀛, 2018. 火后泥石流成灾特点及研究现状. 工程地质学报, 26(6): 1562-1573. 
					
					 | 
			
| 
					 胡卸文, 周永豪, 何坤, 等, 2024. 不同岩性区火后泥石流成灾机理. 山地学报, 42(4): 535-545. 
					
					 | 
			
| 
					 沈婷, 邓辰钰, 丁小荷, 等, 2023. 基于多元线性逐步回归的上海大学学生自习效率影响因素分析. 统计学与应用, 12(1): 100-109. 
					
					 | 
			
| 
					 谭林, 张璐璐, 魏鑫, 等, 2025. 基于U-Net语义分割网络的区域滑坡易发性评价方法和跨地区泛化能力研究. 土木工程学报, 58(6): 103-116. 
					
					 | 
			
| 
					 王利, 张懿恺, 舒宝, 等, 2023. 基于特征优选和逐步回归的黄土滑坡监测数据融合改进方法. 地球科学与环境学报, 45(3): 511-521. 
					
					 | 
			
| 
					 王元欢, 沈昊文, 谢万银, 等, 2024. 火后泥石流启动降雨阈值分析: 以四川乡城县仁额拥沟泥石流为例. 中国地质灾害与防治学报, 35(1): 108-115. 
					
					 | 
			
| 
					 周瑞宸, 胡卸文, 金涛, 等, 2024. 重庆市2022年8月森林火灾火烧区特点及火后泥石流易发性评价. 水文地质工程地质, 51(5): 150-160. 
					
					 |