| Citation: | Niu Zixian, Chen Jie, Xiong Lihua, Li Shuang, Bai Xiongfeng, 2025. Improvement of Deep Learning Method for Daily Precipitation Downscaling. Earth Science, 50(9): 3506-3520. doi: 10.3799/dqkx.2025.095 | 
	                | 
					 Baño-Medina, J., Manzanas, R., Gutiérrez, J. M., 2020. Configuration and Intercomparison of Deep Learning Neural Models for Statistical Downscaling. Geoscientific Model Development, 13(4): 2109-2124.  https://doi.org/10.5194/gmd-13-2109-2020 
						
					 | 
			
| 
					 Bennett, J. C, Grose, M. R., Post, D. A., et al., 2011. Performance of Quantile-Quantile Bias-Correction for Use in Hydroclimatological Projections. In: Chan, F., Marinova, D., Anderssen, R. S., eds., 19th International Congress on Modelling and Simulation. Perth.  
						
					 | 
			
| 
					 Cannon, A. J., 2018. Multivariate Quantile Mapping Bias Correction: An N-Dimensional Probability Density Function Transform for Climate Model Simulations of Multiple Variables. Climate Dynamics, 50(1): 31-49.  https://doi.org/10.1007/s00382-017-3580-6 
						
					 | 
			
| 
					 Chen, J., Brissette, F. P., Chaumont, D., et al., 2013. Performance and Uncertainty Evaluation of Empirical Downscaling Methods in Quantifying the Climate Change Impacts on Hydrology over Two North American River Basins. Journal of Hydrology, 479: 200-214.  https://doi.org/10.1016/j.jhydrol.2012.11.062 
						
					 | 
			
| 
					 Chen, J., Xu, C. Y., Guo, S. L., et al., 2016. Progress and Challenge in Statistically Downscaling Climate Model Outputs. Journal of Water Resources Research, 5(4): 299-313 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Dickinson, R. E., Errico, R. M., Giorgi, F., et al., 1989. A Regional Climate Model for the Western United States. Climatic Change, 15(3): 383-422.  https://doi.org/10.1007/BF00240465 
						
					 | 
			
| 
					 Eden, J. M., Widmann, M., 2014. Downscaling of GCM-Simulated Precipitation Using Model Output Statistics. Journal of Climate, 27(1): 312-324.  https://doi.org/10.1175/jcli-d-13-00063.1 
						
					 | 
			
| 
					 Eum, H. I., Cannon, A. J., 2017. Intercomparison of Projected Changes in Climate Extremes for South Korea: Application of Trend Preserving Statistical Downscaling Methods to the CMIP5 Ensemble. International Journal of Climatology, 37(8): 3381-3397.  https://doi.org/10.1002/joc.4924 
						
					 | 
			
| 
					 Guo, Q., Chen, J., Zhang, X. C., et al., 2019. A New Two-Stage Multivariate Quantile Mapping Method for Bias Correcting Climate Model Outputs. Climate Dynamics, 53(5): 3603-3623.  https://doi.org/10.1007/s00382-019-04729-w 
						
					 | 
			
| 
					 Harris, L., McRae, A. T. T., Chantry, M., et al., 2022. A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts. Journal of Advances in Modeling Earth Systems, 14(10): e2022MS003120.  https://doi.org/10.1029/2022MS003120 
						
					 | 
			
| 
					 He, X. G., Chaney, N. W., Schleiss, M., et al., 2016. Spatial Downscaling of Precipitation Using Adaptable Random Forests. Water Resources Research, 52(10): 8217-8237.  https://doi.org/10.1002/2016WR019034 
						
					 | 
			
| 
					 Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu.  
						
					 | 
			
| 
					 Kingma, D., Ba, J., 2014. Adam: A method for Stochastic Optimization. The 3rd International Conference for Learning Representations, San Diego. 
						
					 | 
			
| 
					 Legasa, M. N., Manzanas, R., Calviño, A., et al., 2022. A Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributions. Water Resources Research, 58(4): e2021WR030272.  https://doi.org/10.1029/2021WR030272 
						
					 | 
			
| 
					 Li, W. T., Pan, B. X., Xia, J. J., et al., 2022. Convolutional Neural Network-Based Statistical Post-Processing of Ensemble Precipitation Forecasts. Journal of Hydrology, 605: 127301.  https://doi.org/10.1016/j.jhydrol.2021.127301 
						
					 | 
			
| 
					 Lim, B., Son, S., Kim, H., et al., 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu.  
						
					 | 
			
| 
					 Liu, J., Chen, Q., Xu, Y., et al., 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Liu, Y. H., Guo, W. D., Feng, J. M., et al., 2011. A Summary of Methods for Statistical Downscaling of Meteorological Data. Advances in Earth Science, 26(8): 837-847 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Liu, Y. M., Ganguly, A. R., Dy, J., 2020. Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Diego.  
						
					 | 
			
| 
					 Liu, Z., Mao, H., et al., 2022. A Convnet for the 2020s. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle. 
						
					 | 
			
| 
					 Mearns, L. O., Arritt, R., Biner, S., et al., 2012. The North American Regional Climate Change Assessment Program: Overview of Phase I Results. Bulletin of the American Meteorological Society, 93(9): 1337-1362.  https://doi.org/10.1175/bams-d-11-00223.1 
						
					 | 
			
| 
					 Meehl, G. A., Covey, C., Delworth, T., et al., 2007. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 88(9): 1383-1394.  https://doi.org/10.1175/bams-88-9-1383 
						
					 | 
			
| 
					 Mei, Y. W., Maggioni, V., Houser, P., et al., 2020. A Nonparametric Statistical Technique for Spatial Downscaling of Precipitation over High Mountain Asia. Water Resources Research, 56(11): e2020WR027472.  https://doi.org/10.1029/2020WR027472 
						
					 | 
			
| 
					 Monjo, R., Gaitán, E., Pórtoles, J., et al., 2016. Changes in Extreme Precipitation over Spain Using Statistical Downscaling of CMIP5 Projections. International Journal of Climatology, 36(2): 757-769.  https://doi.org/10.1002/joc.4380 
						
					 | 
			
| 
					 Pan, B. X., Anderson, G. J., Goncalves, A., et al., 2021. Learning to Correct Climate Projection Biases. Journal of Advances in Modeling Earth Systems, 13(10): e2021MS002509.  https://doi.org/10.1029/2021MS002509 
						
					 | 
			
| 
					 Pan, B. X., Hsu, K., AghaKouchak, A., et al., 2019. Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 55(3): 2301-2321.  https://doi.org/10.1029/2018WR024090 
						
					 | 
			
| 
					 Pierce, D. W., Cayan, D. R., Maurer, E. P., et al., 2015. Improved Bias Correction Techniques for Hydrological Simulations of Climate Change. Journal of Hydrometeorology, 16(6): 2421-2442.  https://doi.org/10.1175/jhm-d-14-0236.1 
						
					 | 
			
| 
					 Pour, S. H., Shahid, S., Chung, E. S., 2016. A Hybrid Model for Statistical Downscaling of Daily Rainfall. Procedia Engineering, 154: 1424-1430.  https://doi.org/10.1016/j.proeng.2016.07.514 
						
					 | 
			
| 
					 Rodrigues, E. R., Oliveira, I., Cunha, R., et al., 2018. DeepDownscale: A Deep Learning Strategy for High-Resolution Weather Forecast. 2018 IEEE 14th International Conference on e-Science (e-Science)., Amsterdam.  
						
					 | 
			
| 
					 Sachindra, D. A., Kanae, S., 2019. Machine Learning for Downscaling: The Use of Parallel Multiple Populations in Genetic Programming. Stochastic Environmental Research and Risk Assessment, 33(8): 1497-1533.  https://doi.org/10.1007/s00477-019-01721-y 
						
					 | 
			
| 
					 Schoof, J. T., Pryor, S. C., 2001. Downscaling Temperature and Precipitation: A Comparison of Regression-Based Methods and Artificial Neural Networks. International Journal of Climatology, 21(7): 773-790.  https://doi.org/10.1002/joc.655 
						
					 | 
			
| 
					 Sharma, S. C. M., Kumar, B., Mitra, A., et al., 2024. Deep Learning-Based Bias Correction of ISMR Simulated by GCM. Atmospheric Research, 309: 107589.  https://doi.org/10.1016/j.atmosres.2024.107589 
						
					 | 
			
| 
					 Sillmann, J., Kharin, V. V., Zhang, X., et al., 2013. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. Journal of Geophysical Research: Atmospheres, 118(4): 1716-1733.  https://doi.org/10.1002/jgrd.50203 
						
					 | 
			
| 
					 Sun, L., Lan, Y. F., 2021. Statistical Downscaling of Daily Temperature and Precipitation over China Using Deep Learning Neural Models: Localization and Comparison with Other Methods. International Journal of Climatology, 41(2): 1128-1147.  https://doi.org/10.1002/joc.6769 
						
					 | 
			
| 
					 Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4): 485-498.  https://doi.org/10.1175/bams-d-11-00094.1 
						
					 | 
			
| 
					 Vandal, T., Kodra, E., Ganguly, A. R., 2019. Intercomparison of Machine Learning Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation. Theoretical and Applied Climatology, 137(1): 557-570.  https://doi.org/10.1007/s00704-018-2613-3 
						
					 | 
			
| 
					 Wang, F., Tian, D., 2022. On Deep Learning-Based Bias Correction and Downscaling of Multiple Climate Models Simulations. Climate Dynamics, 59(11): 3451-3468.  https://doi.org/10.1007/s00382-022-06277-2 
						
					 | 
			
| 
					 Wang, F., Tian, D., Lowe, L., et al., 2021. Deep Learning for Daily Precipitation and Temperature Downscaling. Water Resources Research, 57(4): e2020WR029308.  https://doi.org/10.1029/2020WR029308 
						
					 | 
			
| 
					 Wang, L., Chen, W., 2014. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. International Journal of Climatology, 34(6): 2059-2078.  https://doi.org/10.1002/joc.3822 
						
					 | 
			
| 
					 Wilby, R. L., Wigley, T. M. L., Conway, D., et al., 1998. Statistical Downscaling of General Circulation Model Output: A Comparison of Methods. Water Resources Research, 34(11): 2995-3008.  https://doi.org/10.1029/98WR02577 
						
					 | 
			
| 
					 Wood, A. W., Leung, L. R., Sridhar, V., et al., 2004. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 62(1): 189-216. https://doi.org/10.1023/B: CLIM.0000013685.99609.9e doi:  10.1023/B:CLIM.0000013685.99609.9e 
						
					 | 
			
| 
					 Wu, J., Gao, X. J., 2013. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets.  Chinese Journal of Geophysics, 56(4): 1102-1111 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Yang, C. L., Wang, N. L., Wang, S. J., et al., 2018. Performance Comparison of Three Predictor Selection Methods for Statistical Downscaling of Daily Precipitation. Theoretical and Applied Climatology, 131(1): 43-54.  https://doi.org/10.1007/s00704-016-1956-x 
						
					 | 
			
| 
					 Yang, W., Andréasson, J., Phil Graham, L., et al., 2010. Distribution-Based Scaling to Improve Usability of Regional Climate Model Projections for Hydrological Climate Change Impacts Studies. Hydrology Research, 41(3-4): 211-229.  https://doi.org/10.2166/nh.2010.004 
						
					 | 
			
| 
					 Zhang, Q., Wu, G. X., 2001. The Large Area Flood and Drought over Yangtze River Valley and Its Relation to the South Asia High. Acta Meteorologica Sinica, 59(5): 569-577 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract). 
						
					 | 
			
| 
					 陈杰, 许崇育, 郭生练, 等, 2016. 统计降尺度方法的研究进展与挑战. 水资源研究, 5(4): 299-313. 
					
					 | 
			
| 
					 刘杰, 陈前, 许妍, 等, 2024. 长江流域洞庭湖区出入湖磷通量模拟及水质预测: 机器学习与传统水文模型耦合方法. 地球科学, 49(11): 3995-4007. doi:  10.3799/dqkx.2024.061 
					
					 | 
			
| 
					 刘永和, 郭维栋, 冯锦明, 等, 2011. 气象资料的统计降尺度方法综述. 地球科学进展, 26(8): 837-847. 
					
					 | 
			
| 
					 吴佳, 高学杰, 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报, 56(4): 1102-1111. 
					
					 | 
			
| 
					 张琼, 吴国雄, 2001. 长江流域大范围旱涝与南亚高压的关系. 气象学报, 59(5): 569-577. 
					
					 | 
			
| 
					 张仲石, 李双林, 王会军, 等, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi:  10.3799/dqkx.2022.350 
					
					 |