| Citation: | Peng Ming, Zhao Qingxin, Li Shuang, Chu Weijiang, Zhu Yan, Ge Xiangming, Chen Fangjian, 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100 | 
The landslide-tsunami is a typical multi-hazard coupled system, characterized by complex effects resulting from the transmedia transformation of hazards. In this paper it proposes a two-phase Riemann-SPH model for landslide-tsunami simulation that incorporates dynamic seepage and is validated against laboratory experiments. The incorporation of dynamic seepage effects enhances the completeness of the momentum exchange mechanism in the granular landslide-tsunami process, reducing the errors in the maximum wave amplitude (am) and maximum wave height (Hm) by at least 24.72% and 41.95%, respectively. The results reveal a synergistic regulation of tsunami characteristics by the sliding surface inclination (α) and the landslide leading edge inclination (β): as α increases, the am and Hm exhibit a single-peaked, nonlinear increase-then-decrease trend. The influence of β shows a distinct piecewise pattern: when α+β < 90°, both am and Hm increase significantly with the angle. Beyond this threshold, non-monotonic variations appear, reflecting a competition between the increasing landslide volume and the decreasing effective impact area. Moreover, increasing α enhances seepage, turbulent and frictional dissipation effects, accelerating energy decay. These findings provide scientific support for the mitigation of landslide-tsunami hazards.
	                | 
					 Barla, G., Paronuzzi, P., 2013. The 1963 Vajont Landslide: 50th Anniversary. Rock Mechanics and Rock Engineering, 46(6): 1267-1270.  https://doi.org/10.1007/s00603-013-0483-7 
						
					 | 
			
| 
					 Clous, L., Abadie, S., 2019. Simulation of Energy Transfers in Waves Generated by Granular Slides. Landslides, 16(9): 1663-1679.  https://doi.org/10.1007/s10346-019-01180-0 
						
					 | 
			
| 
					 Cui, P., Zhu, X. H., 2011. Surge Generation in Reservoirs by Landslides Triggered by the Wenchuan Earthquake. Journal of Earthquake and Tsunami, 5(5): 461-474.  https://doi.org/10.1142/s1793431111001194 
						
					 | 
			
| 
					 Dai, Z. L., Lan, B. S., Jiang, M. T., et al., 2025. Numerical Modeling of Submarine Landslide Motion and Impact Behavior Based on the SPH Method. Journal of Ocean University of China, 24(2): 365-376.  https://doi.org/10.1007/s11802-025-5853-8 
						
					 | 
			
| 
					 Evers, F. M., Hager, W. H., 2016. Spatial Impulse Waves: Wave Height Decay Experiments at Laboratory Scale. Landslides, 13(6): 1395-1403.  https://doi.org/10.1007/s10346-016-0719-1 
						
					 | 
			
| 
					 Evers, F. M., Hager, W. H., Boes, R. M., 2019. Spatial Impulse Wave Generation and Propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3): 04019011.  
						
					 | 
			
| 
					 Fornaciai, A., Favalli, M., Nannipieri, L., 2019. Numerical Simulation of the Tsunamis Generated by the Sciara Del Fuoco Landslides (Stromboli Island, Italy). Scientific Reports, 9(1): 18542.  https://doi.org/10.1038/s41598-019-54949-7 
						
					 | 
			
| 
					 Fritz, H. M., 2001. Lituya Bay Case: Rockslide Impact and Wave Run-up. Science of Tsunami Hazards, 19, 3. 
						
					 | 
			
| 
					 Fritz, H. M., Hager, W. H., Minor, H. E., 2004. Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6): 287-302.  
						
					 | 
			
| 
					 Grilli, S. T., Tappin, D. R., Carey, S., et al., 2019. Modelling of the Tsunami from the December 22, 2018 Lateral Collapse of Anak Krakatau Volcano in the Sunda Straits, Indonesia. Scientific Reports, 9: 11946.  https://doi.org/10.1038/s41598-019-48327-6 
						
					 | 
			
| 
					 Heller, V., Spinneken, J., 2013. Improved Landslide-Tsunami Prediction: Effects of Block Model Parameters and Slide Model. Journal of Geophysical Research: Oceans, 118(3): 1489-1507.  https://doi.org/10.1002/jgrc.20099 
						
					 | 
			
| 
					 Heller, V., Spinneken, J., 2015. On the Effect of the Water Body Geometry on Landslide–Tsunamis: Physical Insight from Laboratory Tests and 2D to 3D Wave Parameter Transformation. Coastal Engineering, 104: 113-134.  https://doi.org/10.1016/j.coastaleng.2015.06.006 
						
					 | 
			
| 
					 Huang, B. L., Yin, Y. P., Du, C. L., 2016. Risk Management Study on Impulse Waves Generated by Hongyanzi Landslide in Three Gorges Reservoir of China on June 24, 2015. Landslides, 13(3): 603-616.  https://doi.org/10.1007/s10346-016-0702-x 
						
					 | 
			
| 
					 Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil‒Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157.  https://doi.org/10.1029/2022wr034157 
						
					 | 
			
| 
					 Jiang, Q., 2019. Unified Particle Method Research for Simulation of Landslides Generated Waves in Reservoir Bank (Dissertation). Ningbo Institute of Material Technology, Chinese Academy of Sciences, Ningbo(in Chinese with English abstract). 
						
					 | 
			
| 
					 Lee, C. H., Huang, Z. H., 2022. Effects of Grain Size on Subaerial Granular Landslides and Resulting Impulse Waves: Experiment and Multi-Phase Flow Simulation. Landslides, 19(1): 137-153.  https://doi.org/10.1007/s10346-021-01760-z 
						
					 | 
			
| 
					 Lee, C. H., Lo, P. H., Shi, H. B., et al., 2022. Numerical Modeling of Generation of Landslide Tsunamis: A Review. Journal of Earthquake and Tsunami, 16(6): 2241001.  https://doi.org/10.1142/s1793431122410019 
						
					 | 
			
| 
					 Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, P. F., Jing, H. X., Li, G. D., 2024. Generation and Prediction of Water Waves Induced by Rigid Piston-Like Landslide. Natural Hazards, 120(3): 2683-2704.  https://doi.org/10.1007/s11069-023-06300-7 
						
					 | 
			
| 
					 Li, Q. W., Huang, B. L., Zhang, P., et al., 2024. Influence of the Degree of Landslide Fragmentation on the Characteristics of Landslide Impulse Wave. Rock and Soil Mechanics, 45(11): 3345-3354(in Chinese with English abstract). 
						
					 | 
			
| 
					 Liu, J. X. Z., 2023. Partitioning Prediction Study of Landslide-Tsunamis in the Wu Gorge of the Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). 
						
					 | 
			
| 
					 Luo, M., Khayyer, A., Lin, P. Z., 2021. Particle Methods in Ocean and Coastal Engineering. Applied Ocean Research, 114: 102734.  https://doi.org/10.1016/j.apor.2021.102734 
						
					 | 
			
| 
					 Mao, Y. F., Guan, M. F., 2023. Mesh-Free Simulation of Height and Energy Transfer of Landslide-Induced Tsunami Waves. Ocean Engineering, 284: 115219.  https://doi.org/10.1016/j.oceaneng.2023.115219 
						
					 | 
			
| 
					 Meng, Z. Z., Zhang, J. X., Hu, Y. T., et al., 2023. Temporal Prediction of Landslide-Generated Waves Using a Theoretical-Statistical Combined Method. Journal of Marine Science and Engineering, 11(6): 1151.  https://doi.org/10.3390/jmse11061151 
						
					 | 
			
| 
					 Mohammed, F., Fritz, H. M., 2012. Physical Modeling of Tsunamis Generated by Three-Dimensional Deformable Granular Landslides. Journal of Geophysical Research (Oceans), 117(C11): C11015.  https://doi.org/10.1029/2011JC007850 
						
					 | 
			
| 
					 Paquier, A. E., Oudart, T., Le Bouteiller, C., et al., 2021. 3D Numerical Simulation of Seagrass Movement under Waves and Currents with GPUSPH. International Journal of Sediment Research, 36(6): 711-722.  https://doi.org/10.1016/j.ijsrc.2020.08.003 
						
					 | 
			
| 
					 Rauter, M., Viroulet, S., Gylfadóttir, S. S., et al., 2022. Granular Porous Landslide Tsunami Modelling—The 2014 Lake Askja Flank Collapse. Nature Communications, 13(1): 678.  https://doi.org/10.1038/s41467-022-28296-7 
						
					 | 
			
| 
					 Tang, G. Q., Lu, L., Teng, Y. F., et al., 2018. Impulse Waves Generated by Subaerial Landslides of Combined Block Mass and Granular Material. Coastal Engineering, 141: 68-85.  https://doi.org/10.1016/j.coastaleng.2018.09.003 
						
					 | 
			
| 
					 Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191.  https://doi.org/10.1007/s12650-013-0171-4 
						
					 | 
			
| 
					 Wu, H., Shi, A. C., Ni, W. D., et al., 2024a. Numerical Simulation on Potential Landslide–Induced Wave Hazards by a Novel Hybrid Method. Engineering Geology, 331: 107429.  https://doi.org/10.1016/j.enggeo.2024.107429 
						
					 | 
			
| 
					 Wu, H., Zhong, Q. M., Deng, Z., et al., 2024b. Numerical Investigation of the Effect of Landslide Relative Density on the Impulse Wave Amplitude. Ocean Engineering, 309: 118563.  https://doi.org/10.1016/j.oceaneng.2024.118563 
						
					 | 
			
| 
					 Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36(6): 1134-1142(in Chinese with English abstract). 
						
					 | 
			
| 
					 Xu, W. J., 2023. Research Advances in Disaster Dynamics of Landslide Tsunami. Journal of Engineering Geology, 31(6): 1929-1940(in Chinese with English abstract). 
						
					 | 
			
| 
					 Yin, K. L., Liu, Y. L., Wang, Y., et al., 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074(in Chinese with English abstract). 
						
					 | 
			
| 
					 Yu, M. L., Lee, C. H., 2019. Multi-Phase-Flow Modeling of Underwater Landslides on an Inclined Plane and Consequently Generated Waves. Advances in Water Resources, 133: 103421.  https://doi.org/10.1016/j.advwatres.2019.103421 
						
					 | 
			
| 
					 Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066.  https://doi.org/10.1016/j.cpc.2021.108066 
						
					 | 
			
| 
					 Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052.  https://doi.org/10.1016/j.compgeo.2023.106052 
						
					 | 
			
| 
					 Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water–Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106.  
						
					 | 
			
| 
					 Zhu, Y. F., An, C., 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510(in Chinese with English abstract). 
						
					 | 
			
| 
					 蒋权, 2019. 库岸滑坡涌浪模拟的统一粒子法研究(博士学位论文). 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所). 
					
					 | 
			
| 
					 李宏伟, 徐志国, 史健宇, 等, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi:  10.3799/dqkx.2023.168 
					
					 | 
			
| 
					 李秋旺, 黄波林, 张鹏, 等, 2024. 滑体破碎程度对滑坡涌浪特征的影响研究. 岩土力学, 45(11): 3345-3354. 
					
					 | 
			
| 
					 刘继芝娴, 2023. 三峡库区巫峡段高陡库岸滑坡涌浪分区预测研究(博士学位论文). 武汉: 中国地质大学. 
					
					 | 
			
| 
					 许强, 董秀军, 2011. 汶川地震大型滑坡成因模式. 地球科学, 36(6): 1134-1142. doi:  10.3799/dqkx.2011.119 
					
					 | 
			
| 
					 徐文杰, 2023. 库岸滑坡涌浪链生灾害动力学研究进展. 工程地质学报, 31(6): 1929-1940. 
					
					 | 
			
| 
					 殷坤龙, 刘艺梁, 汪洋, 等, 2012. 三峡水库库岸滑坡涌浪物理模型试验. 地球科学, 37(5): 1067-1074. doi:  10.3799/dqkx.2012.113 
					
					 | 
			
| 
					 朱艺帆, 安超, 2024. 均匀滑移模型在海啸预警中的应用: 以2021年Mw 8.2 Alaska地震为例. 地球科学, 49(2): 500-510. 
					
					 |