• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Peng Ming, Zhao Qingxin, Li Shuang, Chu Weijiang, Zhu Yan, Ge Xiangming, Chen Fangjian, 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100
    Citation: Peng Ming, Zhao Qingxin, Li Shuang, Chu Weijiang, Zhu Yan, Ge Xiangming, Chen Fangjian, 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100

    Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage

    doi: 10.3799/dqkx.2025.100
    • Received Date: 2025-04-26
    • Publish Date: 2025-10-25
    • The landslide-tsunami is a typical multi-hazard coupled system, characterized by complex effects resulting from the transmedia transformation of hazards. In this paper it proposes a two-phase Riemann-SPH model for landslide-tsunami simulation that incorporates dynamic seepage and is validated against laboratory experiments. The incorporation of dynamic seepage effects enhances the completeness of the momentum exchange mechanism in the granular landslide-tsunami process, reducing the errors in the maximum wave amplitude (am) and maximum wave height (Hm) by at least 24.72% and 41.95%, respectively. The results reveal a synergistic regulation of tsunami characteristics by the sliding surface inclination (α) and the landslide leading edge inclination (β): as α increases, the am and Hm exhibit a single-peaked, nonlinear increase-then-decrease trend. The influence of β shows a distinct piecewise pattern: when α+β < 90°, both am and Hm increase significantly with the angle. Beyond this threshold, non-monotonic variations appear, reflecting a competition between the increasing landslide volume and the decreasing effective impact area. Moreover, increasing α enhances seepage, turbulent and frictional dissipation effects, accelerating energy decay. These findings provide scientific support for the mitigation of landslide-tsunami hazards.

       

    • loading
    • Barla, G., Paronuzzi, P., 2013. The 1963 Vajont Landslide: 50th Anniversary. Rock Mechanics and Rock Engineering, 46(6): 1267-1270. https://doi.org/10.1007/s00603-013-0483-7
      Clous, L., Abadie, S., 2019. Simulation of Energy Transfers in Waves Generated by Granular Slides. Landslides, 16(9): 1663-1679. https://doi.org/10.1007/s10346-019-01180-0
      Cui, P., Zhu, X. H., 2011. Surge Generation in Reservoirs by Landslides Triggered by the Wenchuan Earthquake. Journal of Earthquake and Tsunami, 5(5): 461-474. https://doi.org/10.1142/s1793431111001194
      Dai, Z. L., Lan, B. S., Jiang, M. T., et al., 2025. Numerical Modeling of Submarine Landslide Motion and Impact Behavior Based on the SPH Method. Journal of Ocean University of China, 24(2): 365-376. https://doi.org/10.1007/s11802-025-5853-8
      Evers, F. M., Hager, W. H., 2016. Spatial Impulse Waves: Wave Height Decay Experiments at Laboratory Scale. Landslides, 13(6): 1395-1403. https://doi.org/10.1007/s10346-016-0719-1
      Evers, F. M., Hager, W. H., Boes, R. M., 2019. Spatial Impulse Wave Generation and Propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3): 04019011. https://doi.org/10.1061/(asce)ww.1943-5460.0000514
      Fornaciai, A., Favalli, M., Nannipieri, L., 2019. Numerical Simulation of the Tsunamis Generated by the Sciara Del Fuoco Landslides (Stromboli Island, Italy). Scientific Reports, 9(1): 18542. https://doi.org/10.1038/s41598-019-54949-7
      Fritz, H. M., 2001. Lituya Bay Case: Rockslide Impact and Wave Run-up. Science of Tsunami Hazards, 19, 3.
      Fritz, H. M., Hager, W. H., Minor, H. E., 2004. Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6): 287-302. https://doi.org/10.1061/(asce)0733-950x(2004)130:6(287)
      Grilli, S. T., Tappin, D. R., Carey, S., et al., 2019. Modelling of the Tsunami from the December 22, 2018 Lateral Collapse of Anak Krakatau Volcano in the Sunda Straits, Indonesia. Scientific Reports, 9: 11946. https://doi.org/10.1038/s41598-019-48327-6
      Heller, V., Spinneken, J., 2013. Improved Landslide-Tsunami Prediction: Effects of Block Model Parameters and Slide Model. Journal of Geophysical Research: Oceans, 118(3): 1489-1507. https://doi.org/10.1002/jgrc.20099
      Heller, V., Spinneken, J., 2015. On the Effect of the Water Body Geometry on Landslide–Tsunamis: Physical Insight from Laboratory Tests and 2D to 3D Wave Parameter Transformation. Coastal Engineering, 104: 113-134. https://doi.org/10.1016/j.coastaleng.2015.06.006
      Huang, B. L., Yin, Y. P., Du, C. L., 2016. Risk Management Study on Impulse Waves Generated by Hongyanzi Landslide in Three Gorges Reservoir of China on June 24, 2015. Landslides, 13(3): 603-616. https://doi.org/10.1007/s10346-016-0702-x
      Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil‒Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157
      Jiang, Q., 2019. Unified Particle Method Research for Simulation of Landslides Generated Waves in Reservoir Bank (Dissertation). Ningbo Institute of Material Technology, Chinese Academy of Sciences, Ningbo(in Chinese with English abstract).
      Lee, C. H., Huang, Z. H., 2022. Effects of Grain Size on Subaerial Granular Landslides and Resulting Impulse Waves: Experiment and Multi-Phase Flow Simulation. Landslides, 19(1): 137-153. https://doi.org/10.1007/s10346-021-01760-z
      Lee, C. H., Lo, P. H., Shi, H. B., et al., 2022. Numerical Modeling of Generation of Landslide Tsunamis: A Review. Journal of Earthquake and Tsunami, 16(6): 2241001. https://doi.org/10.1142/s1793431122410019
      Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413(in Chinese with English abstract).
      Li, P. F., Jing, H. X., Li, G. D., 2024. Generation and Prediction of Water Waves Induced by Rigid Piston-Like Landslide. Natural Hazards, 120(3): 2683-2704. https://doi.org/10.1007/s11069-023-06300-7
      Li, Q. W., Huang, B. L., Zhang, P., et al., 2024. Influence of the Degree of Landslide Fragmentation on the Characteristics of Landslide Impulse Wave. Rock and Soil Mechanics, 45(11): 3345-3354(in Chinese with English abstract).
      Liu, J. X. Z., 2023. Partitioning Prediction Study of Landslide-Tsunamis in the Wu Gorge of the Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Luo, M., Khayyer, A., Lin, P. Z., 2021. Particle Methods in Ocean and Coastal Engineering. Applied Ocean Research, 114: 102734. https://doi.org/10.1016/j.apor.2021.102734
      Mao, Y. F., Guan, M. F., 2023. Mesh-Free Simulation of Height and Energy Transfer of Landslide-Induced Tsunami Waves. Ocean Engineering, 284: 115219. https://doi.org/10.1016/j.oceaneng.2023.115219
      Meng, Z. Z., Zhang, J. X., Hu, Y. T., et al., 2023. Temporal Prediction of Landslide-Generated Waves Using a Theoretical-Statistical Combined Method. Journal of Marine Science and Engineering, 11(6): 1151. https://doi.org/10.3390/jmse11061151
      Mohammed, F., Fritz, H. M., 2012. Physical Modeling of Tsunamis Generated by Three-Dimensional Deformable Granular Landslides. Journal of Geophysical Research (Oceans), 117(C11): C11015. https://doi.org/10.1029/2011JC007850
      Paquier, A. E., Oudart, T., Le Bouteiller, C., et al., 2021. 3D Numerical Simulation of Seagrass Movement under Waves and Currents with GPUSPH. International Journal of Sediment Research, 36(6): 711-722. https://doi.org/10.1016/j.ijsrc.2020.08.003
      Rauter, M., Viroulet, S., Gylfadóttir, S. S., et al., 2022. Granular Porous Landslide Tsunami Modelling—The 2014 Lake Askja Flank Collapse. Nature Communications, 13(1): 678. https://doi.org/10.1038/s41467-022-28296-7
      Tang, G. Q., Lu, L., Teng, Y. F., et al., 2018. Impulse Waves Generated by Subaerial Landslides of Combined Block Mass and Granular Material. Coastal Engineering, 141: 68-85. https://doi.org/10.1016/j.coastaleng.2018.09.003
      Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4
      Wu, H., Shi, A. C., Ni, W. D., et al., 2024a. Numerical Simulation on Potential Landslide–Induced Wave Hazards by a Novel Hybrid Method. Engineering Geology, 331: 107429. https://doi.org/10.1016/j.enggeo.2024.107429
      Wu, H., Zhong, Q. M., Deng, Z., et al., 2024b. Numerical Investigation of the Effect of Landslide Relative Density on the Impulse Wave Amplitude. Ocean Engineering, 309: 118563. https://doi.org/10.1016/j.oceaneng.2024.118563
      Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36(6): 1134-1142(in Chinese with English abstract).
      Xu, W. J., 2023. Research Advances in Disaster Dynamics of Landslide Tsunami. Journal of Engineering Geology, 31(6): 1929-1940(in Chinese with English abstract).
      Yin, K. L., Liu, Y. L., Wang, Y., et al., 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074(in Chinese with English abstract).
      Yu, M. L., Lee, C. H., 2019. Multi-Phase-Flow Modeling of Underwater Landslides on an Inclined Plane and Consequently Generated Waves. Advances in Water Resources, 133: 103421. https://doi.org/10.1016/j.advwatres.2019.103421
      Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066
      Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052
      Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water–Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106
      Zhu, Y. F., An, C., 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510(in Chinese with English abstract).
      蒋权, 2019. 库岸滑坡涌浪模拟的统一粒子法研究(博士学位论文). 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所).
      李宏伟, 徐志国, 史健宇, 等, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
      李秋旺, 黄波林, 张鹏, 等, 2024. 滑体破碎程度对滑坡涌浪特征的影响研究. 岩土力学, 45(11): 3345-3354.
      刘继芝娴, 2023. 三峡库区巫峡段高陡库岸滑坡涌浪分区预测研究(博士学位论文). 武汉: 中国地质大学.
      许强, 董秀军, 2011. 汶川地震大型滑坡成因模式. 地球科学, 36(6): 1134-1142. doi: 10.3799/dqkx.2011.119
      徐文杰, 2023. 库岸滑坡涌浪链生灾害动力学研究进展. 工程地质学报, 31(6): 1929-1940.
      殷坤龙, 刘艺梁, 汪洋, 等, 2012. 三峡水库库岸滑坡涌浪物理模型试验. 地球科学, 37(5): 1067-1074. doi: 10.3799/dqkx.2012.113
      朱艺帆, 安超, 2024. 均匀滑移模型在海啸预警中的应用: 以2021年Mw 8.2 Alaska地震为例. 地球科学, 49(2): 500-510.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (104) PDF downloads(8) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return