Citation: | Xu Daliang, Peng Lianhong, Deng Xin, Tong Xirun, Xu Yang, Jin Xinbiao, 2025. Petrogenesis of Mesoarchean TTG and Potassic Granite Suit in Wengmen Complex, Southern Dabie Orogen: Implications for Early Crustal Evolution of Yangtze Block. Earth Science, 50(7): 2628-2642. doi: 10.3799/dqkx.2025.121 |
The late Archean (3.0-2.5 Ga) is a pivotal period when the composition of the continental crust and the tectonics style significantly changed. Abundant Mesoarchean granitoids, including TTG gneisses and potassic granitoids, occur in the Wengmen complex within the southern Dabie Orogen, part of the North Yangtze Block. Here, it presents major and trace elements, zircon U-Pb ages and Lu-Hf isotopes of these granitoids, which were integrated to determine their petrogenesis and constrain the crustal evolution of the Yangtze Block. The TTG gneisses and potassium granite veins have similar emplacement ages from 2 927 Ma to 2 917 Ma. The TTG gneisses can be divided into two types: low-HREE type and high-HREE type. Compared with the typical Archean TTGs, the low-HREE TTGs have moderate SiO2 and Na2O content, lower Mg#, Ni, Cr contents and Sr/Y ratio, showing the characteristics of low pressure TTGs. The high-HREE TTGs have lower Mg#, Ni, Cr contents and a very low Sr/Y ratio, which should belong to the transitional TTGs. The potassic granite veins are characterized by high SiO2, K2O, high K2O/Na2O (0.81-1.09) and iron-rich, exhibiting a left-leaning "V-type" seagull-type rare earth distribution pattern, indicative of highly differentiated granites. Their magmatic oxygen fugacity and water content resemble those of modern arc magmas. Zircons from the TTG gneisses gave εHf(t) values of -3.7-+1.5 and Hf crustal model ages (TDMC) of 3.56-3.23 Ga, whereas those from the potassic granites show εHf(t) values of -4.3-+0.2 and TDMC ages of 3.58-3.31 Ga. The coeval occurrence of TTGs and K-rich granitoids of the Wengmen complex within the southern Dabie Orogen marks the development of plate tectonics, the maturation of the continental crust and initial cratonization of the North Yangtze Block during the Mesoarchean.
Chen, Y., Zhang, J., Gao, P., et al., 2022. Modern-Style Plate Tectonics Manifested by the Late Neoarchean TTG-Sanukitoid Suite from the Datong-Huai'an Complex, Trans-North China Orogen. Lithos, 430-431: 106843. https://doi.org/10.1016/j.lithos.2022.106843
|
Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074): 1334-1336. https://doi.org/10.1126/science.1216066
|
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
|
Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054
|
Garçon, M., 2021. Episodic Growth of Felsic Continents in the Past 3.7 Ga. Science Advances, 7(39): eabj1807. https://doi.org/10.1126/sciadv.abj1807
|
Ge, R. F., Wilde, S. A., Zhu, W. B., et al., 2023. Earth's Early Continental Crust Formed from Wet and Oxidizing Arc Magmas. Nature, 623(7986): 334-339. https://doi.org/10.1038/s41586-023-06552-0
|
Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
|
Halla, J., van Hunen, J., Heilimo, E., et al., 2009. Geochemical and Numerical Constraints on Neoarchean Plate Tectonics. Precambrian Research, 174(1-2): 155-162. https://doi.org/10.1016/j.precamres.2009.07.008
|
Hou, X. G., Yu, Z. Q., Chen, S. F., et al., 2024. Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central-East China. Journal of Earth Science, 35(1): 1-15. https://doi.org/10.1007/s12583-022-1692-3
|
Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/S0016-7037(99)00027-7
|
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
|
Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/10.1016/j.lithos.2012.06.010
|
Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
|
Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2018. Evolution of the Archean Continental Crust in the Nucleus of the Yangtze Block: Evidence from Geochemistry of 3.0 Ga TTG Gneisses in the Kongling High-Grade Metamorphic Terrane, South China. Journal of Asian Earth Sciences, 154: 149-161. https://doi.org/10.1016/j.jseaes.2017.12.026
|
Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Eoarchean Gneisses in Northern Dabie Belt. Earth Science, 49(11): 3960-3970 (in Chinese with English abstract).
|
Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
|
Shi, Y. H., Wang, C. S., Kang, T., et al., 2012. Petrological Characteristics and Zircon U-Pb Age for Susong Metamorphic Complex Rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389-3402 (in Chinese with English abstract).
|
Smithies, R. H., Lu, Y. J., Kirkland, C. L, et al., 2021. Oxygen Isotopes Trace the Origins of Earth's Earliest Continental Crust. Nature, 592(7852): 70-75. https://doi.org/10.1038/s41586-021-03337-1
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302
|
Wang, K., Zhao, T. Y., Zhang, S. H., 2023. Discovery of the Oldest (~2.87 Ga) Granitic Gneisses in the Qinling-Dabie Orogenic Belt: Direct Evidence for Mesoarchean Crust. China Geology, 6(3): 533-535. https://doi.org/10.31035/cg2022084
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
|
Xu, D. L., Peng, L. H., Deng, X., et al., 2023a. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract).
|
Xu, D. L., Deng, X., Peng, L. H., et al., 2023b. The Components of the Subducted Continental Basement within the Dabieshan Orogenic Belt as Evidenced by Xenocrystic/Inherited Zircons from Cretaceous Dykes. Earth Science Frontiers, 30(4): 299-316 (in Chinese with English abstract).
|
Xu, D. L., Peng, L. H., Deng, X., et al., 2023. Zircon U-Pb Age Evidence of the Mesoarchean (2.9-3.2 Ga) Crustal Remnant in the Southern Dabie Orogen, South China. China Geology, 6(1): 174-176. https://doi.org/10.31035/cg2022056
|
Xu, S. T., Liu, Y. C., Jiang, L. L., et al., 2002. Architecture and Kinematics of the Dabieshan Orogen. University of Science and Technology of China Press, Heifei, 53-68 (in Chinese).
|
Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
|
Zhai, M. G., Zhao, G. C., Guo, J. H., 2023. Focus on Form and Evolution of Precambrian Continents. Chinese Science Bulletin, 68(18): 2281-2283 (in Chinese).
|
Zhao, G. C., Zhang, J., Yin, C. Q., et al, 2023. Pre-plate Tectonics and Origin of Continents. Chinese Science Bulletin, 68(18): 2312-2323 (in Chinese).
|
Zhao, T. Y., Li, J., Liu, G. C., et al., 2020. Petrogenesis of Archean TTGs and Potassic Granites in the Southern Yangtze Block: Constraints on the Early Formation of the Yangtze Block. Precambrian Research, 347: 105848. https://doi.org/10.1016/j.precamres.2020.105848.
|
Zheng, Y. F., 2024. Plate Tectonics in the Archean: Observations versus Interpretations. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese).
|
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
|
Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
|
邱啸飞, 彭练红, 孔令耀, 等, 2024. 北大别构造带始太古代片麻岩的发现. 地球科学, 49(11): 3960-3970. doi: 10.3799/dqkx.2023.040
|
石永红, 王次松, 康涛, 等, 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389-3402.
|
徐大良, 彭练红, 邓新, 等, 2023a. 大别山南缘翁门杂岩中太古代古元古代岩浆构造热事件的识别及其地质意义. 地球科学, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042
|
徐大良, 邓新, 彭练红, 等, 2023b. 大别山碰撞造山带俯冲盘陆壳基底组成: 白垩纪脉岩捕获/继承锆石的证据. 地学前缘, 30(4): 299-316.
|
徐树桐, 刘贻灿, 江来利, 等, 2002. 大别山造山带的构造几何学和运动学. 合肥: 中国科学技术大学出版社, 53-68.
|
翟明国, 赵国春, 郭敬辉, 2023. 关注前寒武纪大陆形成演化研究. 科学通报, 68(18): 2281-2283.
|
赵国春, 张健, 尹常青, 等, 2023. 前板块构造与大陆起源. 科学通报, 68(18): 2312-2323.
|
郑永飞, 2024. 太古宙地质与板块构造: 观察与解释. 中国科学: 地球科学, 54(1): 1-30.
|